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1 Lecture: January 22nd, 2020

1.1 Introduction: Parameter Estimation and Std Er-
ror

A coin lands heads with probability p, and is tossed 100 times and lands
heads 45 times. What can you say about p?
Answer: We can estimate p with p and fin a SE for p.

A _ 1 100 45 . . . .
p=X = 1552 im1 T = 156 = -45 p is a random variable and it has a dis-

tribution called the sampling distribution. Since p is summation of multiple
independent variables, we know it will follow an approximately normal dis-
tribution.

Var(p = VW(LZ,E? Ty = ;Var(zilgi 1) = =Var(X;). Since we

100 10000 100
know that each coin flip is a Bernoulli variable, we know that the variance

is p(1 — p) which means that we have the approximate SE(p) = %.

However, this relies on the population parameter so we can rewrite this in a
different way:

~ p(1—p .45)(1—.45
SE(p) = /B0 = | /L1 — 497

Conservative Estimate of SE(p):

Var(p) = % . We know that this takes the shape of a parabola with

intercepts at 0 and 1 and a maximum at .5. We know that the maximum
variance we can ever have is .05 because the maximum variance is .25, so

25
V2 =05




1.2 Summary

We have a dichotomous case, box 0, 1
p is equal to the proportion of 1’s in the box
draw some sample size n, x1, T, r3.. w/ replacement from box with N num-

p(1—p)

bers p = & bootstrap SE(p) =
The Conservative estimate is \/—55 However, this is only concerning w/ re-
placement. The minute that we have no replacement, we need to add a
correction factor to it (generally referred to as a SRS). B

x1, T3, ..x, are dependent now, and we add the correction factor: Var(X) =

p(1—p) [N =]
n N-1
Standard Error is equal to standard deviation, but standard deviation is

concerning a population parameter instead of a sampling of a population.
How far a sample parameter estimate is from the true population estimate.

1.3 Examples

Assume that we have a box with 5 numbers, 00001 and that we are sapling
2 w/o replacement. We have to write out the sampling distribution.
(0,0)—=>2,p=0

0,1)—=>5p=35

E(p) = 0x5+.5xt = L Var(p) = E(p*)—(E(p)* = 0x >4+ (2)? 4 —($)? = .06

2 Lecture: January 24th, 2020

2.1 Sec 7.3.3

Let x1,x5... be a SRS fro m distribution with mean g and variance o?. We

can show that E(X) = p and Var(X) = %M

N-1

2.1.1 Example

Population is 393 hospitals, and let x; be the number of patients discharged
from 7" hospital.

u=814.6

o =590



A SRS of n = 50 is taken, we want to find the probability of:

P(|X — | > 100). =7 and og = /= N=2 = 77.95

We know that the curve is approximately normal and as a result we can cal-
culate the z-score and then use inverse Gaussian to achieve an answer. It ends
up being 1.25 standard deviations above, which means that the probability

of that event occuring is .1 and the event it is less than this is symmetrically
less, thus the total probability is .2

2.1.2 Example: Dichotomous Case

let p is the proportion of hospitals with fewer than 1000 discharges. We know
that p = .65

P(|P —p| > .13)

A

This means that we E(P) = .65 and that o5 = \/p(l;p) Bt = [ G528 308

.063. Thus we can find the z-scores which gets us 2.06 which results in a total
p-value of .039

The equivalence of SE of a parameter is to give the confidence in-
terval

Confidence Intervals:

A CI for the mean p or p is a random interval, calculated from the sample
that contains p with a specified probability. For0 < a <1 let Z(a) be the
number such that the area under the standard normal curve to the right of
Z(a) =«

3 Lecture: January 29th, 2020

3.0.1 Method of Moment (MOM) estimators and consistency of
mom estimators (8.4)

8.4: The method of moments (mom)

Review of Gamma Distribution: X Gamma( r, ), and the X models the

rh arrival in a Pois(\) process. Thus we have f(X) = 2~z " le

I(r) = (r —1)! m)




Method of Moment:
If we want to estimate [ parameters, (O, Thetas...0; of a prob distribution.
f(X|©1,0,...0;) from ii.d sample X, X5..X,, from this distribution.
Step 1: Compute the first [ moments:
Mx = E(z*)Vk € (1,1)
M1 == 91(@17 @2..@1)
M2 = gg(@l, @2..@1)

M; = g1(01,0,..0;)
Examples:

1. X Pois(lambda)
M, = E(X) =\

M, =FE(X)= §
M2 — E[$2] — 7»_;;2

Step 2: Use Algebra to compute the system of equations

©1 = hy(pr, pr2--ur)
Oz = ha(1, p2...pu)

O = hu(pa, pa...1u)

Examples
1. M1 = A
p
2. 125} Y ,
__ r+r
NQ 2
muy 2
Ho = b +/‘L1
— M
p2—pi
— M
pa—p3

Step 3: Insert into the estimator for the moments ;... 1.




~

®l - hl(/jla ﬂQu/jl)

Mom estimators have nice properties:

e They converge to the parameter in probability
This means that for e > 0, P(|X,, — X| > €) = 0,n — o0)

Ex
The sample mean converges to the population mean in probability.
Let X1, X5...X,, be i.id with mean p and var 0?). We want to prove that:
X(n) — E(X)
P(X,—X|>¢€) = 0,n— )
P((X(n)— p)? > €%). Thus w have, by Markov’s inequality, that this must be

E(X(py—p)? Var(X, 2
less than or equal to 2@ =" _ Varlle _ o2
€ € ne

goes towards 0.

As n — oo this expression

4 Lecture: January 31, 2019

4.1 Sec 8.4: Proof MOM estimators are are consistent

Def An estimator © of a parameter O is consistent if © — ©

We argue that mom estimators are consistent.

Theorem If X,, —? X and h is continuous then h(z,) —? h(x)

Theorem Generalized Weak Law of Large Numbers

LS r_ 1 XF —P E(X*). This means that the sample mean will converge in
probability to the k™ moment.

So we have (i1, fla, ...f11) = (1, po... 1)
Let h be continuous then:

h(fi1, fio, ..fiy) =P h(pq, po.. 1) )
The first of these is the mom estimator (©,,., and the second is ©.

5



4.2 Sec 8.4: Example of mom calculation

Example: No. 169 chap 8

Gammal(r, A), f(z) = f(z|r,\) = F’\(r " le A

[romme [

/ o 1 —)\a:dl, — F<T)
0 A

-1 —)\xdx —

Problem
Consider an i.i.d sample of RV’s w density f(z|o) = e "lg,0 > 0 and we
want to find o.

Step 1: Find the moment, E(X)

o0 — |z

p = E(X) = [ &£e o dr =0 because we have an odd function. However,
we want to represent our estimator as function of X, so this is essentially
useless. We can go to the next moment.

pe = E(X?) = [7 2® =" 4z Because this is even we can see that this is

20
equal to :
0o g2 CTB) a2 .. . . T
0 e = dr = —1 = 20° since this is a Gamma distribution with A = -, r =
3
Step 2 0 = /5
Ty 2
Step 30 =1/ = lezlxl

4.3 Non parametric Bootstrap for 95% confidence in-
terval

To find SE in a confidence interval, we often need to bootstrap.

Step 1:

Take a sample X1, X5..X,, of size n one time from your population. Calculate
o.

Step 2:

Resample from your sample many many times with replacement and com-
pute the sample estimate of your parameter(0), 7, ©1...0% where B is the
number of times we resample.



Step 3:

Subtract © from each f our ©F and we get B numbers. This will have some
type of distribution and we can then create a confidence interval from this.
Step 4: Find 2.5 and 97.5 biggest value and call this a and b.

Step 5

Given a, b, the 95% CI of © is (© — b,© — a) which is equivalent to P(a |
0 — 0 <b) =95%.

5 Lecture: February 3rd 2020

5.0.1 Section 10.2: The Empirical CDF (ecdf)

When we do non parametric bootstrap, why does it yield us an equivalent
answer? How does resampling from a sample equal sampling from a popula-
tion?

Suppose our population cdf, F, is a non decreasing function:

Let X, X5...X,, be our original sample: (X;, Xs...X,, F'). Define ecdf as
F,(z) = L(#X; < z) (i.e the fraction of data points that are less than z)
Facts(P380):

1. F,, is an unbiased estimator of F'.
2. SE(F,) > 0asn — o

When doing non parametric bootstrap instead of resampling from F’ given
we resample from F, size n and that works for resampling of size n.
The CDF is unique to a distribution and represents the population, and the
ecdf represents the sample. We know that these two converge under enough
simulation, which is why bootstrapping works.

A

5.1 Computing SFE(0O) by hand

Ex: An ii.d sample 1 = 4,29 = 7,23 = 4,14 = 2,25 = 3 is taken and fol-
lows a Poisson (A) distribution. Find a mom estimator of A and approximate
the SE())

Facts:

A=X

Var(X) =\



Zf , 7; = 20. Lambda is equal to 4 because it is the average, giving us %.

SE(X) is equal to /Var(X) = \/V‘"’ \/> \/% f

We can also substitute the sample variance for Var(X = — LS (X
X)? = L and this is relatively close to 4.

Ex

Suppose that X is a discrete RV with:

P(X =0) =20

P(X =1)= %@

P(X=2)=3(1-0)

P(X =3)=1(1-6)

The following observations are taken:

3,0,2,1,3,2,1,0,2, 1 R

Find the MOM estimator of © and approximate SE(0)) E(X) =
20+1-0=—-30+1
0= %(% - ,Ul) = 1527,ul

O +

ST

1
3

[\ [N}

Var(©) = Var(3(3 — X)) = Var(X)

2 options to compute Var(X)
1. Approximate Var(X) by s* and get SE(G) 171 = Done in R sqrt(55 sVar(c(3,0,2,1,3,2,1,0,:
2. Find Var(X) = E(X?) — E(X?) and get SE(0) = .173

6 Lecture: February 5th, 2020

6.1 Sec 4.6: Delta Method to find SE(g(X

Ex Xj, Xy,, X;... are i.i.id Ezp())
Fact: p=E(X) =3
Find & and SE()\)
M1 =5 —> A= m S A=
(SE(X )) = Var(x). However, we need the delta method to approximate
this.

L,

Theorem: Delta Method
X1, X5...X,, i.i.d mean p, SD = 0. g is smooth around p and ¢'(u) # 0:

var(g(z)) ~ (¢'(1n))*%



The proof is essentially mirroring a taylor series fro ¢(z) around pu.

9(2) = 9(p) + 9/ (1)(z — p) + LG
For large n, X is close to u so ¢(z) = g(p) + ¢'(1)(Z — p)
var(g(z)) =~ var(g(p) + g'(p) (T — p))

var(g(z)) = ¢ (u)?var(X — mu)
Var(X —mu) is equal to the variance of T because y is just a constant, and

thus it equal to 2
n

Back to X Exp(\) example”
We saw \ = + so let g(X) = % in delta method.

Var(g(X)) ~ (g (1))*
(@) =% = (g (W) = (=) =

Var(\) m X2 =2
Var(A) = -, SE(\) = ¢4

Ex Let X1, X5..X,, 1.i.d R.V’s w/ density f(X[0) = (§+1)X°,0< X <1
Find © an use 6 -method to approximate at SE(O)
B(X)=m = [, (0 +1)2®dx = &1

E(Xz) _ _ 641 o+2
@+3 B
1— 2mu1 —2X
O = e —~ 0= x—1
SE(®)

O+1 )2

Var(©) — (g (u))Q‘;;
Var(©) —

6.2 Sec 8.5: Maximum Likelihood Estimator (MLE)

Suppose R.V X7, X5..X,, have joint density f(Xi, Xs, X,,|O)

Given observed data:

X1 =11, X5 = x9,...X,, = x,, fixed numbers

lik(©) — f(z1...2,|©) This is a function of © for fixed x1, ...z, and the max
value of lik(©) represents the value of © that maximizes the likelihood of
observing your data.

1fX; areii.id

1ik(0) = 111, f(X,|6).

Take the log of both sides and take the derivative and find the © that max-



imizes the likelihood of ©
log(lik(©)) = 371, log(f(x:]©)

7 Lecture: February 7th, 2020

Ex:# 16 b
Consider an i.i.d sample RV with densities
1 =Xl

[(X]o) = 55e77
lik(o) — I,

(wilr) = %
l(0) = niog(£) ~ L3 |X;

7.1 Property of MLE

e Consistency of MLE:
We say an estimate O is consistent if over time it will equal the true ©
Proof?
Let Xy, X5..X,, are i.i.d Fg, where ©y is unknown, assume L(©) is
smooth and behaves in a nice way.
© maximizes LS 1 log(f(z4]©)) and is dependent on the data, and is
thus a random variable. However, the expectation of that is:
(©) = Ee, S0, log(f(2:1©)) = Ee, (log(f(2]0))
By the weak law of large numbers, [,,(0) = [(©)
Fact: 1[(©) < 1(©¢)VO

8 Lecture February 10th, 2020

8.1 Equivalence for MOM and MLE

A

9(8) = 9(©)

10



8.2 Sec 8.5: CI of parameter N(y,o?)
(a) Chi Square Distribution

Z ~ N(0,1)
7~ X3
11
7~ G -
amma(2,2)
R+ 75+ .22 ~ X2

9 n 1
~Q nz
X, amma(z,z)

(b) Important Identity
If Xi,X5..X,, =~ N(p,0?) then

TL—}ISZ ~ x2_, and S? has n-1 degrees of freedom

(¢) The distribution of the u in random samples of a normal distribution
4

follow a t-distributon where ¢,,_; = = where u is a x2_; . We know
1

that u follows a t distribution of this sort.

9 Lecture: February 12th, 2020

95% Cl in R is given by:
2A—quantile(\*, ¢(.975,.025)) and A" is a thousand or more resampling while
A is our original sample estimate.

9.1 Large Sample Theory for MLE

Theorem 1 The MLE 0 for © is asymptotically (for large n) unbiased and
normal. More precisely © ~ N(O,, m) where 1(©q) is the Fischer Info
(FI) at true the value Oy

Fischer Info:

Fi is the measure of the amunt of info a single observation x has to estimate
Oumr

ex Lets look at log(f(z|O©)) for two circumstances where z is really informa-
tive and uninformative

11



informative

X ~N(p1)
(1) = Log(f(z]p)) = wm%ﬂe(x—%
- zog<%2_ﬂ ()

uninformative
X ~ N(p,25)

() = log(—= — (%32)?

Each curve is providing its own vote for the true parameter location (i.e
the peak). How can we measure how tight the peak is? We have to look
at the slopes of the curves (called the score function) and the score,(©) =
log(f(2]0)) = 1(©)

We are interested in © and E(I'(©)) =0

10 Lecture: February 14th, 2020

I1(0)Var(l'(9))
1(0) = —E("(0))

10.1 Cramer-Rao Inequality (CR) Inequality

Main Points:
Let Xy,...X,, iid f(z,@)

1. Ou ~ N(6, nIl(B)) for large n

2. Cramer Rao inequality

Let 67 be unbiased then Var(éML) < Ml(e)

12



Definition: An unbased estimator whose variance achieves the CR lower
bound is called efficient R
From 1, above we see that 0,7, is asymptotically efficient.

11 Lecture: February 19th, 2020

11.1 Sec 8.7: Mean Square Error (MSE) of an Estima-
tor

The MSE is used to measure how good of an estimator 0 is.
Definition: MSE(0) = E((§ — 0)*) = Var(0) + Bias(0)?

~

Bias(0) = E(0) — 0

MSE(0) = E((d — E(0) + E() — 0)?)
Ex:
X1, Xs...X,, Bern(0)

0=X
0=X,
E0)=0
E) =0

Var(f) = v ar(f) = 6(1 — 0)

Thus 6 has the smallest MSE (both are unbiased thus we don’t have to in-
clude that part into our calculation

Conclusion: Among all unbiased estimators the MLE for large sample size
has the small possible MSE since it is efficient. (it achieves CR lower bound).
However, it is to note that the Cr inequality only applies to unbiased estima-
tors so if you allow the estimator to be biased you might get an even smaller
MSE than you might get among unbiased estimator.

11.2 Sec 8.8 Sufficiency

There are two primary motivations for sufficient estimators

(a) Once you collect you data you can form a sufficient statistic and then
throw away your data; you only need the sufficient statistic to estimate

13



(b) (Rao-Blackwell Theorem)
You can make an estimator 6 better by taking the conditional expecta-
tion given a sufficient statistic T

A~

0(T) = E(O(X,..X,)|T)

Definition A statistic T'(X;...X,,) is a function of your data only (e.g X,
min(Xi...X,) , X3, ...) but it cannot be like X — u because this involves
information we don’t have within our data.

Definition T is a sufficient statistic for # if the conditional distribution
of X;...X,|T doesn’t depend on ¢

ex: X N(6,1)

T=X

X T=x

Ex X7 = # red cars crossing golden gate bridge in 1 min Pois(0)

Xy = # blue cars crossing golden gate bridge in 1 min  Pois(6)

X1, X, are iid

T:Xl,Xg POZS(QG)

Xi|T =4 Bin(4, 1) This does not depend on # which means that it is
a sufficient statistic of X;

Recall Baye’s Rule:
P(A|B) = P(AN B)/P(B)
and for densities it says:

Xi1=z1,Xpn=xn,T=t|0
fwyg|T = t,0) = HB=0 e IO

12 Lecture: February 21st, 2020

12.1 Sec 8.8 Factorization Theorem

X" = (21, 29..2,)

Y™ = (y1,Y2---Yn)

14



Theorem 2 T is sufficient if
F(X"0) = g(T(X™),0)h(z") (1)

Thus 1t factors into two functions, one that doesn’t depend on 6 and the other
that does but only through T'(x)

Corollary A:
If T is sufficient for 8 the MLE estimate is a function of 7.

13 Lecture: February 24th, 2020

13.1 Sec 8.8

T is MSS if SP = LP;

So T is MSS iff the following is true:

T(X") = T(y”)z’ffﬁg:‘z; doesn’t depend on 6.
Xy, Xy Bern(0)

Find MSS:

flyiyel0) 02 vi(1-0)2~XWi

Fler,z2]f) — 92 7i(1-0)2- 2

This doesn’t depend on 6 when >y, = > ;

1

Rao-Blackwell teorem describes how to improve an estimator using a
sufficient statitics § = E(0|T") has smaller MSE than 6

14 Lecture: February 26th, 2020

14.1 Hypothesis Testing

Sec 9.2 Frequentist approach

Definition: A hypothesis is a statement about a population parameter. The
goal is to decide based on your sample X;..X,, which of two complementary
hypothesis is true.

Hy = Null Hypothesis

H,; = Alternate Hypothesis

Decision Functions

Hypothesis testing makes a binary decision, either accept or reject the null

15



hypothesis

1 Hyrejected
d(x) =
0 Hyaccepted

be the decision function
It is always possible to make an error
a = Py(d(x) = 1) a Type 1, false positive (Null was true but we rejected it)
g = Pi(d(z) = 0) a Type 2, false negative (Null wasn’t true bu we accepted
it)

«, B are inversely correlated, meaning we can’t lower both. Thus we fix
a at a certain level and design test to minimize S as much as we can.
We call o a significance level

14.2 Likelihood Ratio Test

If we have fy(z) which we assume is the null distribution and f;(x) which is

the alternate distribution, we can calculate A = QEZ))

Py(A < ¢) reject lambda is small

We can look at this like, what is the probability that we get the value of X
as 1 given both the null and alternate distribution. This means that we can
set an « to view this probability and choose a ¢ that agrees in a theoretical
sense.

Values for A in whih we reject Hj is called the rejection region.

14.3 Power of Test

Power =1 —p =1- Pi(d(z) =0) = P(d(x) =1)

Definition

Suppose under the null X ~ Unif[0,1] and under the alternative X has
density f(z) =2z,0<z <1

1. What is LRT at o = .1 level of significance

2. What is the power of the test?
LRT reject Hy if A = D@ o= L

filx) — 2x
.1:P(%<c)c:f—8

16



15 Lecture: March 13th, 2020

15.1 Sec 11.1, Sec 11.2

2 sample z-test if we know the variance.

Xl, XQXTL ~ N(,ux, 0'2)

Yy, Y.V >0 N(py, 02)

These are both independent samples that we drew, with one being the con-
trol and the other being the treatment group. We want to see if there is a
statistically significant difference between them

X -V~ N (e _:uy70-2<71_1+%>>

This means that we have the 95% confidence interval for y, — 1, as:

X-Y+196x0(/L+21)

15.2 Sec 11.1, 11.2

2 sample t-test with ¢ unknown

If we sample n times with replacement from N(y,,c?) and m times with
replacement from N (p,, 0?) then an unbiased estimator of o is:
(n—1)S2+ (m — 1)5’5
P (n—1)+(m—1)

this is an unbiased estimator and:

2

- 1 1
X ¥ = Nl — iy, 3 + )

Theorem 3 This is the 2 sample t-test

Suppose X1.. Xy ~ Ny, 02)(ii.d) and Y1,Y5.. Yo ~ N(py, 02)(i.i.d)

The test statistic given that o, = o, and that S, is the standard error of both
distributions combined:

X_Y_<,ux_:uy)
Sp 1,1

n m

~ tn+m—2

If we assume that these two have the same variance, but still unknown then
we can use the combined variance estimate to plug in the bottom. However

17



if we assume that they are different the test statistic doesn’t exactly abide
by the t distribution but instead:

Theorem 4 Suppose X1..X,, ~ N(p, 02)(i.i.d) and Y1,Y5.. Yo, ~ N(py, 07)(i.i.d)
The test statistic given that Sy, is the standard error is dependent on Var(X—
Y)

2 2

Sz 4 Sy

Then we can approximate this as a t distribution with degrees of freedom
equal to:

2 $2
(5 + 2P
)

Sz
n_ _}_ﬁ

m—1

round|(

n—1

Based on either, we have a corollary to the distribution showing the duality
of confidence interval

Theorem 5 A 100(1 - «)% CI for mu, — i, is X =Y +¢($)Sx_y
Hypothesis testing for 2 sample problem using t — test is:
HO e = Hy = 0

If n,m are large the t test is approximately a z — test and the ¢t and z
test are equivalent to the GLRT

16 Lecture 23

Last time: 2 sample ¢ test
We compared the means of two independent normal populations:

same variance (oS 4+ (m_1)52
Sy = (3 + &)

n m n+m—2
diff variance )

2 _ _Si %
SXfY_n—i_m

18



16.1 Power

We often see the highest power (lowest type 2 error) possible in an experi-
ment

We know that power is a function of sample size; lets assume we have two
independent populations with a Normal distribution and equal standard de-
viations and take two samples of the same size

X1.. X ~ N(pg,0?)

Y;..Y,, ~ N(u,,0?)

Hypothesis

H, 0 Mz — My = 0

Hy : piy — pty = 9§ > 0 (one sided)

If we know o then we have:

XY ~ Nty — iy (L + 1))

n m

Yo W,
Sower
_,:)./ W ot . R"?
COREES s
Power = Py(d(z) = 1) 2)
= (X~ 7 > 2(a)o(y/ 2)) 3)

19



16.2 Paired t-test

We wish to estimate i, — 1, but in a paired study so our sample is no longer
independent

let X;..X,, ~% N(p,,0?)

let Y1...Y, ~" N(p,,07) oxy = Cov(X;,Y;) #0

D, =X, =Y,

E(Dy) = B(X;) = E(Y)) = i — 1,

Var(D;) = 0} 4 0, — 20xy

D=~ N (e — py, %(O’% + 02 —20xy)

We take the test statistic:

Hy:pg=0
Hi : g # 0 and this has the rejection region:

DI > ta-a(3)55

16.3 Multinomial Distribution

Generalizes the binomial distribution
p1 — outcome 1
p2 — outcome 2

Pm — Outcome m

Y i1 Pi = 1 We want to find the probability of getting x; of outcome 1, x5
of outcome 2 ..

The answer of this is :

n! -
1,472 Tm
(xllxgl..xm!)pl 2" P

If we know what p;..p,, then the multinomial distribution is completely spec-
ified and we can calculate the probability of any outcome

We know that each x; has the distribution of a Bin(n, p;) which is approx-
imately normal N (np;, np;(1 — p;)) thus we can model our multionomial as

20



many normal distributions
We can see that this manifest as a Chi-Square distribution:

m 2

Ty — Np;
E —( ) ~ X'?n—l
i=1 "pi

17 Lecture 24

17.1 Goodness of Fit \? test

Our goal is to see whether our model for the distribution of a multinomial
distribution fits our data

We draw n times with replacement from our box a get observed counts
T1, Ta..T,, where Y., x; = n. If the prob of tickets in box is p;(0)..pn, () we
get expected counts np;(6), npa(0)..np,(6)

Thus we do a goodness of fit test:

(O; — E;)? 9

Pearson Chi Square T.S = Z 7 ~ Xon—1—k

=1

where k is the dimension of 8, O; is the observed count and Ej; is the expected

count
A goodness of fit test explores how good your probability model fits your data

17.2 Hardy Weinberg (HW) Equilibrium Model

If gene frequencies are in equilibrium the genotypes AA, Aa, aa, occur in the
population with probability: (1 — theta)?,260(1 — 6), 6? according to the HW
model

Thus our null is that P;(0) = (1 — 6)2, P»(0) = 20(1 — 0), P3(0) = 62

We observe that AA = 342, Aa = 500,aa = 187
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Step 1: Find Ot

n!
k(0) = 1—0)*1(26(1 — 6))"26%* 7
t0) = (, o)1= 622900 0) )
1(0) = log(n!) — Z log(x;!) 4+ 2x1log((1 — 0)) + xalog(20(1 — 0)) + 2x3l0g(0)
i=1
(8)
2z 2 — 446 1
/
= — 2 —
') 1_0—1—96220(1_9)—1— T3 9)
211 2 — 46 1
= — 213~ 10
0= 129" ™% —g % (10)
0= —4z1(0) + 22(2 — 40) + 223(2 — 20) (11)
0= —4[['19 -+ 21’2 — 401’2 + 41’3 — 4.’1336 (12)
40(1’1 + 29 + 1'3) = 2ZE2 + 41‘3 (13)
To + 21’3
_ 15
0 o (15)
Step 2:
Thus, by this we get that:
P(0) = .320
Py(0) = .489
P5(6) = .180
Thus our expected count should be: x; = 3404, x5 = 503, z3 = 186
Step 3:
Test:

Hj : have Multinomial (1029, .32, .49, .18)

H, : have a MN of some other type with n = 1029 and 3 categories
~ (0~ E)

) = .0357

25 )

The probability of getting a number in a x5, _, is about .85, thus it is above
the a level.
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18 Lecture 25

18.1 recap

The goodness of fit (G.O.F) x? test assesses whether a categorical random
variable follows a certain distribution (the null distribution) versus follows
any other arbitrary distribution.

We saw that -2 log(A) where A is from the GLRT, is approximately
the Pearson \? test statistic

Fcells

O; — E,)?
3 = )

=1

Since -2 log(A) it follows that

2
~ Xdim sample space - dim null space

Fcells

Oi_Ei2 2
Z< )

E. ~ Xdim sample space - dim null space
i=1 t

18.2 Assumptions of Goodness of Fit Test

e Have one categorical variable
e Have independent observations
e The outcomes are mutually exclusive

e We require large n and not many expected counts are below 5

We need all of these so that our multinomial is characterized by normal
distributions and not by a Poisson or skewed normal

18.3 Test of Homogeneity

Example: A study was done comparing frequencies of a particular allele in
a sample of diabetics and non diabetics
The following data was observed:
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Diab | non Diab
Bb or bb 12 4
BB 39 49

Our question is whether the non diabetic and the diabetic have differ-
ences in their frequency of alleles? Theory

J independent [ cell multinomials
Hy : all J multinomials are the same
H, : they are not all the same

19 Lecture 26

19.1 recap

The Test of Homeogenity is a way to assess if a J independent I cell multi-
nomials all come from the same distribution?

19.2 Section 13.3

This is a continuation of the previous day:
Lets represent our data as such:

Diab | No Diab | Total
Bb or bb | 12 4 16 In a general case we can see that
BB 39 49 88
Total 51 53 104

our observed values can be written as:

N11 | N1z | M13 | N1«
N1 | N2z | M23 | Nax
Tl | Mx2 | Ma3 n

The assumption we make is that the null distribution is
T2

and thus our best estimates for these probabilities is:
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Thus our expected counts are:

Ny1T1 | My2T1 | Mx3T

N1 | My2To | Nu3T2

Thus the test statistic is the same, with:

Mg KNy 5 )2

s (nij — ==
de - T Tlx 5

all i, j n

The next step is to figure out the degrees of freedom:

df = dim$) — dimwy

wp is I — 1 because we can see this as a single multinomial with [ — 1
degrees of freedom
Q is equal to J multinomials each with I — 1 free params, thus we have
J(I —1) - I —1 which means we have df = (J —1)(I — 1)

19.3 Test of Independence

Our goal is to see whether there two categorical variables are independent or
not

We have J cell multinomial and
We have [ cell multinomial
where both I and J are numbers (specifically positive integers)
P(J =j) =m= =,
P([:’i):ﬂ'[:i:ﬂ'i
P<I:Z7J:]) = T4
Independence means that:
T = ;T4
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Hy : Two independent R.V’s size I, .J
H, : Two dependent R.V’s size I, .J

Our observed and expected are exactly the same as the Test for Homogenity:

Ny1T1 | M2 | Ns3T]
Ns1T2 | My2To | Nu3T2

where 7AT[:Z' = %

We get the same test statistic as the TOH
So, literally the difference between the Test of Independence and the Test
of Homogenity is by design of experiment

In the test of independence, observational units are collected at
random from the box and we observe 2 categorical variables for
each of the elements. On the other hand, in the test of homogenity,
the data is collected by random sampling from each subgroup of
the subpopulation separately. Assumptions about the x? test:

e Have one or two categorical variable

e Have independent observations or an SRS if it is relatively small to the
sample size

e Outcomes are all mutually exclusive, thus we cannot have a member
belonging to multiple values in the same categorical variable

e We require n to be large and no more than 20% of expected counts | 5.

20 Lecture 27

20.1 recap

We have three different chi-square tests:

e GOF-test: have single sample from population , and answers whether
the pop came from a particular multinomial distribution
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e Test of Homogenity: multiple samples from subgroups of the popula-
tion and answers whether the subgroups have the same multinomial
distribution

e Test of Independece: we track two categorical traits from the same
population, and answers the question if the categorical traits are de-
pendent

These all run with the assumptions:

e Individuals in the population have a ticket that they can only mark
one option on

e Tickets are drawn independently or a simple random sample that is a
sample part of the total population of interest

e The numbers in the expected table aren’t too small (less than 5)

20.2 Sec 11.2.3 Mann-Whitney, non parametric test

We use the Mann-Whitney test when we have 2 independent samples that
aren’t normal and we ask if the distributions are the same

X = (z1...x,) ~ small group = F/(

Y = (y1...yn) ~ large group = G

X and Y are independent samples
ex:
21 = 1000, 25 = 1380, 25 = 1200, y; = 1400, yo = 1600, y5 = 1180, g, = 1220
Step 1: Sort {z1...Tm, y1..yn } from smallest to largest
{z1,ys, T3, Y4, T2, 1, Y2} We can then calculate T'x, Ty, the rank sums of X, Y
respectively. This is the Mann Whitney test statistic
Tx =9, Ty =19
Null: F =G
Alternate: F' # G

If the null is true that means that neither T'x or Ty should be particularly
large or small.
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We need to produce some type of sampling distribution for Ty in order
to evaluate the p- value of our calculated Tx. We can either:

e Permutate through all possible values of Tx given our sample. Thus
there are (g) Tx’s and we can see where our values places in this; how-
ever, if we get really large m and n we are pretty much fucked.

e Ty and Ty are approximately normal and use this fact to calculate.

m(m+n+1) mn(m-+n+1)
2 ’ 12

Ty%N( )

This is proved using the Wilkoxin Test statistic:

- , nm mn(m+n+1)
Uy:;jzll(xi <yj)ssz(7, 5 )
The Wilkoxin test statistic has the following relationship with Mann
Whitney test statistic:
1
Uy =Ty — %

21 Lecture 28

21.1 recap

Mann Whitney Test - T'x and Ty are the rank sums of X and Y. If the null
is true, we expect that the rank sums will be close to each other. We can
show that for large m+n the distribution of the Mann Whitney test statistic
is approximately normal:

Wilkoxin tried to estimate 7 = P(X < Y') and in so doing showed the Mann
Whitney test statistic T'x is approximately normal:

let
U= Y I <)
i=1 j=1

We know that this is approximately normal, by the CLT and the sum of
independent variables.
To approximate 7, Wilkoxin used # = --U,

mn
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We know that U, =}, >, I(X; <Yj) is comparing every X to every Y.
For any X; we know that is is less than a given Y] if it has a lower rank than
the Y; meaning we can rewrite this summation as:

Uy=> Y I(X

We know that T, = the sum of the rank of Y. We can see that U, is
equal to:

(numberofX's) < Y1y = Ry, — 1+
(numberofX's) < Y(a) = Ry,) — 2+

(numberof X' ) < Y = R,y —m

This means that U, = Y., R,, — >, i. This means that U, = T, — ™2+l
We can also see that under the null ¥ = G that:

m(m+n+ 1)

E(Ty) = 9

Var(T,) = fracm(m +n+ 1)12

21.1.1 Proof

If we assume that F' = G then that means that 7T, is equal to the sum of
sampling m times without replacement from the population {1,2...m + n}
Thus we know that:

E(T,) = mu
N —m
N -1 )
Where 1 and o° are the population mean and variance of the average of a
sample taken from population.

Var(T,) = mo*(

2

N N+1 _N+1
Z 3

o —E(Xz) 2_%2 ))2
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JQZLN(N+1)(2N+1)_(N+1)2: (N+1DEN+1) (N +1)?
N 6 4 6 4

» AN?*46N+2—-3N?—-6N-3 N?-1

B 12 12

Thus we know that (N =m +n):

g

m(N + 1 m(m+n+1
E(T,) =mx*pu= 5 ): ( 5 )

N2—1 N-m (m+n-+1)(mn)
Var(T,) =m THA 5

22 Lecture 29

22.1 Recap

We can see that the Mann Whitney is 95% as accurate as a t-test for data
assuming that the data is normal. Thus, the Mann Whitney will always
preform close to the t-test and, is more flexible when we ae concerned with
data in which we don’t know the distribution exactly.

22.2 Signed Rank Test

This works for paired data. This shit is fat complicated but also sorta dope:

before | after | difference | abs(difference) | rank | signed rank
25 27 2 2 2 2
29 25 -4 4 3 -3
60 59 -1 1 1 -1
27 37 10 10 4 4

wy (Wilkoxin Test Statistic) = sum of the positive signed ranks. Hy We ex-
pect that the distribution of differences is symmetric around zero. For small
n we can work out the different combinations and thus have the sampling
distribution. For large n we use:

nn+1) n(n+1)2n+1)
4 7 24 )
The Wilcoxin test is approximately 95% as powerful as the t-test but this
is only when the assumptions of the t-test is meet.

WtNN(
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22.3 Analysis of Variance

One way layout is an experimental design in which independent measure-
ments are made under each of several treatments The model:

)/z‘j:,u‘f'Oéi—i‘Gij

where €;; is a N(0,0%) variable and )" a; = 0. These facts mean that:
}/U ~ N(lu + aiaa2)
Hozalzag..:an:()

H, : Some alpha’s will differ

23 Lecture 30

23.1 recap

Analysis of variance is aimed at comparisons of the means of data.
The goal in a one way layout is to see whether the differences in the means
of the measurements is significant or just due to chance.

23.2 Normal Theory; F-Test

Lets generalize and have I groups each with J observations, and we will call
each of the elements in I as a "treatment”. We will let:

Y;; = the j observation of the ith treatment

and assume that our model is corrupted by independent random errors such
that:
Yij=p+oi + €
1 is the overall mean level, «v is the differential effect of the ith treatment.
The errors are assumed to be independent in the j** observation of the it
treatment. We assume that ¢;; = N(0,02) and 3. a; = 0 E(Y;;) = p+ a;
which means that if «; is zero the value is the same for all the observations
in that treatment. The difference between treatment ¢ and j is is a; — o5
Analysis of variance is based on the following principle:

AT

i=1 j=1 =1 j

J J J
(V= Yi)2 4+ > ) (Vi - Y.)
= =1 i=1 j=1
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where
1Y
Y;. = j Z Y;J
j=1
and
) T
_=322m
3 Jj=

The terms appearing in the first identity is called the sums of square and
can be represented by:

SSror = SSw + SSB

The sum of the squares equal the difference within groups and the differ-
ence between groups.

23.3 Independence of SSB and SSW

We know that X and X; — X are independent R.V’s. (If you don’t remember
the proof just accept it, its a whack a proof).

We know that Y = %Zle Y; is a function of Y;,Y5..Y;. This means
that Y; — barY is also a function of Y7, Y5 ..Y; . This also means that SSB
is a function of Y; .Y, ..Y;. However, SSW is a function of Yij — Y; Vi which
means that by the fact that they either involve independent variables or by
the theorem at the start of this section, these are all independent and thus

SSB and SSW are independent.

23.4 Total Squares and Chi Square

SST SSB
g ~ X1 oz ™~ XI(J-1)

If we use the fact that "= l)S ~x2_yand (n—1)8*=37" (X; — X)?
we can see that these are the same scenario.
NEEDS WORK Facts:

1. SST = SSW + SSB
2. SSW and SSB are independent
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3. Chi square subtraction property: X = X; + Xo, X ~ x2  X; ~
Xz, — Xo ~ x2, This means that SST has I.J — 1 degrees of freedom,
SSW has I(J — 1) degrees of freedom and SSB has I — 1 degrees of
freedom. (This makes sense since the total is looking at all the squares,
within is comparing J—1 observatios in I groups and between is looking
only between [ treatments.

23.5 F-Distribution

Definition: Let U and V be independent y? random variables with a
and b degrees of freedom. The distribution

Fab:

)

=<2 IS

is called the F' distribution.
The F-Test itself is:

PP SSB(I(J - 1))

Froarg-y = SSW/o? — SSW (I — 1)
I(J-1)

24 Lecture 31

24.1 recap

Assume that we have a variety of treatments, each with a certain num-
ber of observations and we want to test if any of these had any statis-
tically significant difference compared to the average.

We assume that each observations in the treatment behaves according
to
Yz‘j = U + a; + €5

where the 1 is the default we assume that all of them abide by and a;
is the impact of treatment j with an error that is normally distributed
with zero mean and some standard deviation. Our goal is to see if all
the a; are zero or not. We can use a I test to see the ratio between the
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SSB and SSW and use this to assess if the differences are statistically
significant.

There are certain assumptions we make with the ' — Test:

e Our data Yj; is normal

e The variance of each treatment group is the same o2
e All observations are independent

If we dont meet this we should use a non parametric test

24.2 Review of T-test
Assume two independent normal populations N (u,, 0?) and N (uy, 0?)
with the same variance. Take random samples X7, X5..X,, are i.i.d

~ N (pz, 0?) and Y3...Y, are i.i.d ~ N (py, 0?)

(n—1)S2+(n—1)S2

S? =
P 2n — 2
(2n—2)S2  (n—1)5% (n—1)S:
2 L = o2 X+ o2 L =X 1 T X1 = Xona

due to the the standard errors being independent of each other.

Thus we see that:

. X-Y-0
where the standard error is equal to \/Var(X —Y) = %2 + %2 =

2 2
N W

24.3 Bonferonni T-test

if the F-test rejects the null, it is likely that at least one pair of means
is different. If we do (g) pairwise t-test, at alpha level of a that means
that the probabilit y that we expect at least one false positive is < a(é)
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by the addition rule (the probability each one is a false positive is «
which means that the probability they aren’t false positive is 1 - «
which means the probability they are all not false positive is the sum
of all of these substracted from 1). Using this we can set:

.05
T
This means that as we get more tests it gets harder to reject a null
value in each of the t-tests.

We can use Bonferroni t-test which uses the pooled sample variance:

(J—1)S2+ (J = 1)S2...+ (J — 1)S2
I(J—1)

52—

which has I(J — 1) df

Thus we have

tr(

J-1) = ———F— S\/7
25 Lecture 32

25.1 Different size groups Anova

5 SST
SST = ZZ ij ) o2 NXQZ:ZI:lJi—l

i=1 j5=1

, SSW
SSW = ZZ ij Z'* T g2 NX2ZZ~I:1(J1'—1)
=1 j=1
SSB = ZZ SSQB ~ Xi
=1 j=1

Bonferroni Tests

o SSW
D 1
Zi:l Ji—1
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tsr

and we compare this value to

(Ji—1)

&

(2)

Sp
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