
Necessary/very good for Quant Interviews. The best way to ace a quant interview is to articulate observations  

 

CHAPTER 1:  

1. Outcome Space and Events  
a. Outcome space – just a set, denoted by Ω, of all possible outcomes for a given experiment  
b. Outcome – ω is an element of Ω  
c. Event – a subset of the outcome space, and the empty set ∅, and the entire set Ω are both 

allowed as subsets  
2. Equally Likely Outcomes  

a. Let A ∈ Ω, the #(A) denotes the number of elements inside of A  
b. P(A) denotes the probability that A occurs, or the chance that A occurs  

i. P(A) = #(A)  /  #(Ω) 
3. Collisions in Hashing  

a. A Hash function assigns a code called a Hash to each set of individuals. If two individuals are 
assigned a similar values it causes a collision making issue when identifying  

b. It can be cumbersome to track all the different hash numbers and the individuals, but we pick 
randomly from a large enough set proportionally to the number of hash numbers we need, then 
the P(Collision) is relatively low  

c. If there are N potential hash values and n individuals that need a identification, then there are 
𝑁𝑁𝑛𝑛 different permutations available.  

d. What are the chances of No Collision?  
i. If n > N, then there has be a collision  

ii. We can simply do 𝑁𝑁!
𝑛𝑛!𝑁𝑁𝑛𝑛 as there are N potentially options for the first, N-1 for the next, 

etc  
e. Can find the probability of at least 1 collision as it is the complement  

4. The Birthday Problem  
a. Classic example for finding the probability of having a “collision” of birthdays and shows how it 

increases rather sharply  
5. An Exponential Approximation  

a. Although we have the equation ∏ 𝑁𝑁−𝑖𝑖
𝑛𝑛

𝑛𝑛−1
0   we don’t have a good understanding of how this 

increasing or decreasing as N changes  
b. If we take the logarithm of a multiplicative series, it turns into a summation  

i. A*B = C, log(A*B) = log(C ) = log(A) + log(B) = log(C)  

ii. Thus using the above logic, we now have log(P(No Collision)) = ∑ log �𝑁𝑁−𝑖𝑖
𝑛𝑛
� 𝑛𝑛−1

0  

iii. Working with summations is much easier in general  
c. We utilize the knowledge that log(1 + x) is approximately equal to x as x approaches infinity. 

While this isn’t necessarily accurate in our case as x (or in our case i/N) isn’t zero, we are simply 
trying to reach an approximation for the most part  

d. Utilizing the point in 5c, we can see that the summation become  

i. log�𝑃𝑃(𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)� =  ∑ log �1 − 𝑖𝑖
𝑛𝑛
�𝑛𝑛−1

0  



ii. log�𝑃𝑃(𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)� =  ∑ 𝑖𝑖
𝑁𝑁

𝑛𝑛−1
0  

iii. log�𝑃𝑃(𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)� = 𝑛𝑛(𝑛𝑛−1)
−2𝑁𝑁

 
iv. Thus we have a general approximate for the P(No Collision) which we can get by 

exponentiating both sides to arrive at 𝑒𝑒�
𝑛𝑛(𝑛𝑛−1)
−2𝑁𝑁 � 

v. The distribution 1 − 𝑒𝑒(−𝑐𝑐𝑥𝑥2) is called the Rayleigh Distribution 

CHAPTER 2: CALCULATING CHANCES 

There are some basic axioms of probability that were outlined by Andrey  Kolmogorov and are the basics 
for probability theory  
 Probability – the function that P defined on events in Ω 
 Axiom 1 – Probabilities are non negative: for each A, P(A) ≥ 0  
 Axiom 2 – Probability of an entire space Ω is 1, thus P(Ω)  = 1  
 Axiom 3 – If two events A, B are mutually exclusive then 
                           𝐴𝐴 ∩ 𝐵𝐵 =  ∅ and 𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) 

1. Addition 
a. Third axiom is about mutual exclusive events; A and B are mutually exclusive if at most one of 

them can happen  
b. If two events are mutually exclusive this makes addition easier as we know that the probability 

of either happening is just the sum of the individual probabilities  
c. We can generalize this to get the finite additivity which essentially states  

i. 𝑃𝑃(⋃𝐴𝐴𝑖𝑖) =  ∑𝐴𝐴𝑖𝑖   𝑔𝑔𝑔𝑔𝑣𝑣𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 
d. Nested Events  

i. An event B is nested inside A if B is a subset of event A  
ii. 𝐴𝐴  " \" 𝐵𝐵 =  𝐴𝐴 ∩  𝐵𝐵𝐶𝐶  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐵𝐵𝐶𝐶  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

iii. If B is a subset of A, then we have that A \ B = P(A)  - P(B)  
1. However is a B is not a pure subset of A, we cannot make this generalization 

e. Complement 
i. For any event B, the complement BC  for which P(BC ) = equal to 1 – P(B)  

2. Multiplication  
a. AB = 𝐴𝐴 ∩ 𝐵𝐵 and represents a union  

b. Conditional Probability is represented as  𝑃𝑃(𝐵𝐵 |𝐴𝐴 ) = 𝑃𝑃 (𝐴𝐴𝐴𝐴)
𝑃𝑃(𝐴𝐴)

 which just means the probability B 

will occur given that A occurs. IF they are disjoint, 𝑃𝑃(𝐵𝐵|𝐴𝐴) = 𝑃𝑃(𝐵𝐵) 
c.  This can simply be finessed to read that 𝑃𝑃(𝐵𝐵|𝐴𝐴) ∗ 𝑃𝑃(𝐴𝐴) = 𝑃𝑃(𝐴𝐴𝐴𝐴) which can be helpful when 

multiplying probabilities if only particular knowledge is given  
d.  

3. Updating Probabilities  



a.  
b. The Effect of the Prior: You can update probabilities given new information and in a timeline, 

knowing an event can lead to changing the conditional probability  

Chapter 3: Random Variables  

 A random variable – a numerical function defined on a outcome space, such that its domain is Ω and its 
range is the number line. Typically denoted by late upper case letters in the alphabet  

1. Functions on an Outcome Space  
a. Listing out all possible combinations for any particular event might become tedious as it grows 

so we can either use shorthands, abbreviations or a computer to do so  
b. Product Space – set of all pairs (a, b) where  𝑎𝑎 ∈ 𝐴𝐴 , 𝑏𝑏 ∈ 𝐵𝐵   

i. The product of a single sample of a coin toss (H, T) and itself is the product of two coin 
tosses [(H,H), (T, H), (H, T), (T,T)] and multiplying it again gets us 3 tosses etc  

ii. Python Library contains code to help us do this:  
1. from itertools import product  
2. base_case = np.array(‘H’, ‘T’)  
3. two_tosses_p = list(product(base_case, repeat  = 2))  
4. three_tosses_p = list(product(base_case, repeat  = 3))  

c. Probability Space is simply the outcome space accompanied by the probabilities of each 
outcome. We can create a table as such with  

i. three_tosses = 1/8 * np.ones(8)  
ii. three_toss_space = Table().with_columns( ‘omega’, three_tosses, ‘P (Omega)’ , 

three_tosses_p )  
d. Can do the same type with a die, simply with die = np.arange(1,7,1)  

2. A Function on the Outcome Space  
a. What if we performed a function on the outcome space that we are given?  
b. In this sense, lets say we rolled a dice 5 times, and we added up all the values that we saw. Thus 

we can essentially map each of the outcomes to a summation which we write as  
i. 𝑆𝑆 ∶  Ω → {5, 6, … .0} 

ii. The above equation essentially means that the summation of any given vector of rolsl 
falls in the range {5, 30}  

c. Can create this in Python similarly  
i. new_column = Table().with_Columns( ‘omega’, five_rolls, ‘S(Omega)’, 

five_roll_space.apply(sum, ‘omega’), ‘P(Omega)’, five_roll_probs)  
3. Functions of Random Variables 



a. A function of a random variable is also a random variable, thus the square of the sum, the cube 
of the sum, the add-one of a sum are all also random variables  

4. Events Determined by S  
a. For any subset of A of the range of S, define the event {𝑆𝑆 ∈ 𝐴𝐴 } = { 𝜔𝜔 ∶ 𝑆𝑆(𝜔𝜔) ∈ 𝐴𝐴}  which 

essentially means that the set includes all outcomes that have a summation included in A.  
b. Five_rolls.where(‘S(Omega)’, are.equal_to(10)) will get you all the places where 5 dice add up to 

10  
c. Thus the 𝑃𝑃(𝑆𝑆 ∈ {10}) = 126

1776
 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 126 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  
5. Distributions  

a. Often we care about the probability distribution for a particular Random Variable in which we 
ascertain the probability for each distinct value that the Random Variable can take  

i. Python Code:  
1. dist_S = five_rolls_sum.drop(‘omega’).group*(‘S(Omega)’, sum)  
2. dist_S  

ii. The produced table dist_S is the probability distribution table of S (which recall is the 
sum of 5 rolls of a 6 sided die)  

iii. Probabilities in a distribution are non negative and must sum to 1  
b. Visualizing Distributions  

i. Prob140 library builds on the datascience library to provide some convenient tools for 
working with probability distributions and events  

ii. We are going to extract both the values and their corresponding probabilities and set 
them equal to arrays  

1. S = dist_S.column(0) 
2. P_S = dist_S.column(1) 
3. Important Note: Plot in the Prob140 Library  

a. Plot(probability_distribution) will output a histogram as long as the 
distribution is valid  

b. You can create a probability distribution by starting with an empty table 
and using value and probability table method 

i. new_dist_s = Table().values(s).probability(P_S) 
ii. Plot(new_dist_S) 

c. Making binning decisions with non integer bounded random variables 
becomes substantially harder  

iii. Notes on the Distribution of S  
1. The new_dist_S is an exact distribution and assumes that we have iterated over 

all possible outcomes of the experiment.  
2. The Central Limit Theorem says we need approximately 30 samples in order to 

ensure a bell shape curved for the sum of a large random sample. If you start 
with a uniform distribution, however, it approaches a bell curve much faster 
(within 5 is sufficient)  

iv. Visualizing Probabilities of Events  
1. We can use the event function of the Plot function to highlight a particular 

event  



a. Plot(new_dist_S, event = np.arange(14, 22, 1)  
2. We can also find the “exact” probability of this given the distribution table by 

using the prob_event method  
a. new_dist_S.prob_event(np.arange(14,22,1)) 

v. Math and Code Correspondence  
1. 𝑃𝑃(14 ≤ 𝑆𝑆 ≤ 21 ) =  ∑ 𝑃𝑃(𝑆𝑆 = 𝑠𝑠)21

𝑠𝑠= 14  
2. You can equally represent this by doing  

a. event_table = new_dist_S.where(0, are.between(14,22) )  
b. event_table.column(‘Probability).sum() 

c. Equality  
i. Two Random Variables are equal if their values are the same for every outcome of the 

same outcome space where both of them are defined in  
1. 𝑋𝑋(𝜔𝜔) = 𝑌𝑌(𝜔𝜔) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔 ∈  Ω 
2. Let NH be the number of heads in N coin tosses and NT be the number of tails, 

then  N  - NT and NH are equal random variables  
3. NH and NT are not equal but have the same probability distribution and are 

noted as equal in distribution  
4. If two Random Variables are equal they are equal in distribution but the 

converse does not necessarily hold true  
ii. Extra Point:  

1. Table().with_values(possible_i).probability_function(function)  
a. This will apply a function to every value and place it as its probability  

Chapter 4: Relations between Variables  

 It helps us understand the conditional behavior by understanding the relationships between different 
variables  

1. Joint Distributions  
a. Suppose X, Y are defined on the same outcome space: in this case, we utilize the notation 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦)  for the probability that X = x and Y = y.  
i. The joint distribution is the cumulation of all probabilities where (x,y) ranges over 

all the possible values of (X, Y)  
ii. The call for this is  

1. joint_table = Table().values(variable_name_1, values_1, 
variable_name_2).probability_function(function_name) 

iii.  ALthought this does serve us the purpose we need we can also visualize this is 
much more conventional way which would be: 

1. Joint_dist = joint_table.to_joint() 
iv. To Find the Particular Probability of a given relationship between X and Y, 

identify any cells that satisfy that condition and simply add them together 
b. Marginal Distributions  

i. We can partition by each of the variables inside of the joint distribution such 
that we have  

ii. {𝑋𝑋 = 𝑥𝑥} =  ⋃{𝑋𝑋 = 𝑥𝑥, 𝑌𝑌 = 𝑦𝑦}  𝑓𝑓𝑓𝑓𝑓𝑓  𝑎𝑎𝑎𝑎𝑎𝑎  𝑦𝑦 ∈ 𝑌𝑌  



iii.  {𝑋𝑋 = 𝑥𝑥} =  ∑𝑃𝑃(𝑋𝑋 = 𝑥𝑥, 𝑌𝑌 = 𝑦𝑦)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 ∈ 𝑌𝑌  
1. Given a joint distribution object, we can use its method .marginal as 

such  
2. joint_dist.marginal(‘X’), where ‘X’ is a column name  
3. OR joint_dist.both_marginals() 

c. Conditional Distributions  
i. Can create a conditional distribution using Python  

1. Joint_dist.conditional_dist(‘Y’, ‘X’)  
a. Essentially produces a conditional distribution of Y given each 

different value of X  
d. Updating Distributions  

i. Conditioning gives us a way of updating our opinions based on new data  
ii. You start out with a prior opinion about an unknown quantity. For every 

value of the unknown quantity, the data have a likelihood. (For N coin tosses 
we know the likelihood of getting 1 head, 2 heads etc based on our prior 
opinion – it should be 50, 50). After you see the data you apply Bayes Process 
and say based on the new information what is the probability of the true 
parameters. Then you keep going  

e. Dependence and Independence  
i. Conditional Distributions helps us formalize our intuitive ideas about 

whether two random variables are independent of each other  
1. If the marginal distribution of Y changes depending on the X that we 

have selected, then we know that X has an influence on Y. Thus they 
are dependent. If knowing X has no affect on Y, then they are 
independent.  

ii. Independence – P( B | A ) = P(B). Or equivalently, P(AB) = P(A)P(B)  
iii. Random Variable Independence - 𝑃𝑃(𝑋𝑋 = 𝑥𝑥 |𝑌𝑌 = 𝑦𝑦) = 𝑃𝑃(𝑋𝑋 = 𝑥𝑥) for all x, y  
iv. Events of Random Variable Independence – 𝑃𝑃(𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 ) =

𝑃𝑃(𝑋𝑋 = 𝑥𝑥)𝑃𝑃(𝑌𝑌 = 𝑦𝑦) 
f. Mutual Independence 

i. Events A1, A2, A3, A4…… are mutually independent if given the values of any 
subset, chances of events determined by the remaining variables are 
unchanged  

ii. Random Variables obey a similar law with X1, X2 , X3 , X4 , …  being mutually 
independent if given the values of any subset chances of events determined 
by the remaining variables are unchanged  

g. i.i.d Random Variables  
i. Suppose distribution of X is given by 𝑃𝑃(𝑋𝑋 = 𝑖𝑖) = 𝑝𝑝𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 = 1,2 …𝑛𝑛. 

Suppose Y = X, then what is P(X  = Y)  
1. 𝑃𝑃(𝑋𝑋 = 𝑌𝑌) =  ∑ 𝑃𝑃(𝑥𝑥 = 𝑖𝑖,𝑦𝑦 = 𝑖𝑖)𝑛𝑛

𝑖𝑖=1   
2. 𝑃𝑃(𝑋𝑋 = 𝑦𝑦) =  ∑ 𝑃𝑃(𝑥𝑥 = 𝑖𝑖)𝑃𝑃(𝑦𝑦 = 𝑖𝑖)𝑛𝑛

𝑖𝑖=1  



3. 𝑃𝑃(𝑋𝑋 = 𝑦𝑦) =  ∑ 𝑝𝑝𝑖𝑖2𝑛𝑛
𝑖𝑖=𝑖𝑖  

Chapter 5: Collections of Events  

1. Bounding the Chance of a Union 
a. 𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵 ′\′𝐴𝐴𝐴𝐴) 
b. 𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) − 𝑃𝑃(𝐴𝐴𝐴𝐴) 
c. Boole’s Inequality – provides an upper bound for the probability of the union of n 

events  
i. max{𝑃𝑃(𝐴𝐴𝑖𝑖): 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 } ≤ 𝑃𝑃(⋃𝐴𝐴𝑖𝑖)  ≤  ∑𝐴𝐴𝑖𝑖  

ii. Essentially says that the Union of n different events is at the very least the 
size of the largest event and at the very max the sum of all the Probabilities 
of different events  

iii. Bonferroni Method –  
1. Assume we have 5 samples and want to make it so that all 5 are 

accurate to degree 95%. The complement of this situation is that least 
one is bad, which means that if P(Ai ) represents Ai being accurate Ai C 
represents it being inaccurate. So if even one is bad that the chance 
that ⋃ 𝐴𝐴𝑖𝑖𝐶𝐶5

𝑖𝑖=1  is equal to .05 which we know has an upper bound of 
∑ 𝐴𝐴𝐶𝐶𝑖𝑖5
𝑖𝑖=1  which means each can be equal to .01 which entails each 

sample has to have an average accuracy of 99% to be certain the 
chance all 5 is accurate is equal to or greater than .95 

2. Inclusion Exclusion  
a. 𝑃𝑃(⋃ 𝐴𝐴𝑖𝑖) =  ∑ 𝑃𝑃(𝐴𝐴𝑖𝑖) −  ∑∑ 𝑃𝑃�𝐴𝐴𝑖𝑖𝐴𝐴𝑗𝑗� + ⋯ . .1 ≤𝑖𝑖<𝑗𝑗≤𝑛𝑛

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1  

3. The Matching Problem   
a. Consider a random permutation of n elements each labeled from 1 to n. Whats the 

probability that a given element with the label i lands at position i  
b. This is equal to 1

𝑛𝑛
 as each position is equally likely and there is exactly one position 

that satisfies the condition we have set  
c. For any number from 1 to n  we can find the chance that that many envelopes land 

at corresponding position. We place n envelopes in their place and permutate the 
other n – k envelopes and divide by the total permutations (n!) and get the 
probability  

d. P(No Match) = 1 – P(At least One Match) = = 1 −
𝑃𝑃(⋃ 𝐴𝐴𝑖𝑖) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑛𝑛

𝑖𝑖=1  

e. Since there are n elements each with probability 1
𝑛𝑛

 and 𝑛𝑛(𝑛𝑛−1)
2

 elements with 

probability 1
𝑛𝑛(𝑛𝑛−1)

 and so on, the equation simplifies to 1 − 1
2!

+ 1
3!

+ 1
4!

.. which is a e 

taylor series of exponent -1  
4. Sampling without Replacement  



a. Symmetry: For each fixed i, the coordinate Xi is an integer between 1 and n assuming 
a normal permutation from 1 to n. To find the marginal distribution of Xi we need to 
find P(Xi = k) for each k in the range 1 to n.  

i. Equal to 1
𝑛𝑛

 and it doesn’t depend on i which means that it is uniform  
b. Simple Random Samples: sample drawn at random without replacement from a 

finite population. The sample is a subset of the population not a rearrangement of 
the entire population  

i. This is essentially combinatorials and just choosing 5 particular, or 6 
particular etc from a 50 cards etc  

1. Can do this using scipy import misc 
a. Misc.comb(52,5) 

c. The Number of Simple Random Samples  
i. �𝑁𝑁𝑛𝑛� is choosing a sample of size n from size N and each one are equally likely  

d. Counting Good Elements in a Simple Random Sample  
i. Suppose a population of N individual contains G good individuals and you 

take a simple random sample of size n. How many samples contain g good 
elements?  

1. Pick g individuals from a sample of G and do this in �𝐺𝐺𝑔𝑔� 

2. For eac choice of these good there are �𝑁𝑁−𝐺𝐺𝑛𝑛−𝑔𝑔 � choices of bad 
individuals  

3. The chance of getting g good elements in the sample is  

a. 
�𝐺𝐺𝑔𝑔��

𝑁𝑁−𝐺𝐺
𝑛𝑛−𝑔𝑔 �

�𝑁𝑁𝑛𝑛�
 is the chance of getting exactly g good elements in the 

sample  
4. These are called hypergeometric probabilities because the formula is 

related to the hypergeometric series of mathematics  

Chapter 6: Random Counts  

1. These form a class of random variables that are of utmost importance. General setting is 
that there a number of trials each which can be a success or a failure. Random count is the 
number successes among the trials.  

2. Indicators ad Bernoulli (p) Distribution  
a. Consider a trial that can only result in a success or a failure. The number of successes 

X is thus a zero one valued random variable and is said to have a Bernoulli 
distribution.  

b. Counting is the Same as Adding Zeros and Ones  
3. Binomial Distribution  

a. Let X1, X2, X3….. be i.i.d Bernoulli random variables and let 𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + 𝑋𝑋2 +  𝑋𝑋3 +
⋯  𝑋𝑋𝑛𝑛. That’s a formal way of saying: 



i. Suppose you have a fixed number (n) of trials  
ii. Trials are independent 

iii.  The probability of success is each to p  
b. Let Sn be number of successes in n independent Bernoulli(p) trials. It then has a 

binomial distribution with parameters n and p. 
i. 𝑃𝑃(𝑆𝑆𝑛𝑛 = 𝑘𝑘) =  �𝑛𝑛𝑘𝑘�𝑝𝑝

𝑘𝑘(1 − 𝑝𝑝)𝑛𝑛−𝑘𝑘 
ii. (𝑎𝑎 + 𝑏𝑏)𝑛𝑛 =  ∑ �𝑛𝑛𝑘𝑘�𝑎𝑎

𝑘𝑘𝑏𝑏𝑛𝑛−𝑘𝑘𝑛𝑛
𝑘𝑘=0  

iii. from scipy import stats, stats.binom.pmf(3,7, 1/6)  
1. can also pass an array as the first argument and it will return 

probability for each of the  
c. Binomial Histograms 

i. First create a table:  
1. K = Np.arange(n+1) 
2. Binom_prob = stats.binom.pmf(k, n, p) 
3. Binom_dist = Table().values(k).probability(binom_prob) 
4. Plot(Binom_dist) 
5. Plt.xlim(x, y) will zoom in on a specific range (x,y) 

ii. Both the number of samples and the probability influence the shape of the 
graph  

d. Binomial Distribution is valid only with: finding the number of successes in a known 
number of independent trials with the same probability of success for each trial  

e. HyperGeometric Distribution  
i. Let N  = G  + B, where G represents the good elements and B represents the 

bad elements.  
ii. Number of Good Elements in a simple Random Sample  

1. 𝑃𝑃(𝑋𝑋 = 𝑔𝑔) =
�𝐺𝐺𝑔𝑔��

𝐵𝐵
𝑏𝑏�

�𝑁𝑁𝑛𝑛�
, 𝑏𝑏 + 𝑔𝑔 = 𝑛𝑛  

2. Can calculate using stats.hypergeom.pmf(values_we_want, Pop_size, 
Good_elements, sample_size)  

f. Relation with Binomial  
i. Suppose you sample with replacement from a population, then there is the 

chance G/N of selecting a good individual each time, with a population of n.  
g. Odds Ratio  

i. Binomial(n, p) involves powers and factorials which become irritating to 
calculate once the numbers become large enough  

1. We can simply the process a little bit  
ii. Consecutive Odds Ratio  

1. The kth consecutive odds ratio  = 𝑅𝑅(𝑘𝑘) = 𝑃𝑃(𝑘𝑘)
𝑃𝑃(𝑘𝑘−1)

 

2. P(0) = (1-p)n , P(1) = P(0)R(1), P(2) = P(0)R(1)R(2) 



3. Utilizes the common factorial elements of all the numbers, which 

results in 𝑅𝑅(𝑘𝑘) =
�𝑛𝑛+1𝑘𝑘 −1�𝑝𝑝

1−𝑝𝑝
 

4. This allows for no factorials to be involved at the expense of a little 
less clean formula  

5. R(k) is a pure function of k as the rest of the variables are constant, 
which means that as k increases, R(K) decreases. This implies that 
once the binomial distribution passes a certain k it will continually 
decrease from that point onwards  

6. Mode of Binomial – mode of a binomial distribution is the possible 
value that has the highest probability.  

a. The largest K for which R(K) > 1 has to be a mode; after this 
the histogram is falling and before this it was rising  

b. 𝑛𝑛+1
𝑘𝑘
− 1 ≥ 1 ∗ 1− 𝑝𝑝

𝑝𝑝
 

c. 𝑛𝑛+1
𝑘𝑘
− 1 ≥ 1

𝑝𝑝
− 1 

d. 𝑛𝑛+1
𝑘𝑘

 ≥ 1
𝑝𝑝
→ 𝑘𝑘 ≤ 𝑝𝑝(𝑛𝑛 + 1) 

e. There can be two modes if the R(K) = 1, because that means 
P(K)  = P(K – 1) and thus they have the same probability of 
being chosen  

7. The Law of Small Numbers  
a. Consecutive odd ratio helps us to derive an approximation for 

the distribution when n is large and p is small and is called the 
Law of Small Numbers because we are expecting a small 
number of successes -> it approximates a distribution given 
the probability of success is small resulting in a tightly 
distributed model  

b. Binomial formula is rather clunky which results in the fact that 
we would rather approximate to some degree of certainty but 
quickly then relying on exactness and inefficiency.  

c. Let n  infinity and pn  infinity but in a way such that npn > 
0.  

i. Let Pn(K) be the probability of k successes given the 
binomial distribution bin(n, pn)  

1. Then 𝑃𝑃𝑛𝑛(0) = (1 − 𝑝𝑝𝑛𝑛)𝑛𝑛 = (1 − 𝑛𝑛𝑝𝑝𝑛𝑛
𝑛𝑛

)𝑛𝑛 =

 (1 − 𝑢𝑢
𝑛𝑛

) 𝑛𝑛 =  𝑒𝑒−𝑢𝑢 
2. We can solve for the general k equation using 

the consecutive odds ratio  



3.  
4. And then use induction to conclude that the 

distribution is 𝑃𝑃(𝑘𝑘) = 𝑒𝑒−𝑢𝑢𝑢𝑢𝑘𝑘

𝑘𝑘! 
 

d. Poisson Approximation to the Binomial  
i. Let n  infinity and pn  0, in a way that their product 

approaches a value u greater than zero. For large n, we 
can approximate the probability by using a Poisson 
Distribution  

ii. Can use stats.poisson.pmf in the exact same way as 
stats.binom.pmf  

1. Poisson only has one parameter (equal to the 
product of n and pn)  

Chapter 7: Poissonization 

1. Poissonization – binomial (n, p) random variable has a finite number of values; it can only be 
between 0 and n. However, we should expand this to include infinite spaces especially as n 
approaches very large numbers  

a. 𝑃𝑃(𝑘𝑘) = 𝑒𝑒−𝑢𝑢�𝑢𝑢𝑘𝑘�
𝑘𝑘! 

  
b. We have to state the additivity axiom of probability theory in terms of countably many 

outcomes: If A1, A2 … are mutually exclusive, then: 
i. 𝑃𝑃(⋃ 𝐴𝐴𝑖𝑖) =  ∑ 𝐴𝐴𝑖𝑖∞

𝑖𝑖=1
∞
𝑖𝑖=1  

ii. This is only infinite but can be reduced to finite additivity  
c. Poisson Distribution  

i. A R.V X has a Poisson distribution if 𝑃𝑃(𝑋𝑋 = 𝑘𝑘) = 𝑒𝑒−𝜇𝜇 �𝜇𝜇𝑘𝑘�
𝑘𝑘!

,𝑘𝑘 = 0, 1, 2 … 
ii. The terms of proportional to the Taylor Series expansion of 𝑒𝑒−𝜇𝜇  

d. The Mode of the Poisson Distribution is the integer part of the 𝜇𝜇. If it is an integer both 
𝜇𝜇 and 𝜇𝜇 − 1  are modes  

e. The Cumulative Distribution Function  
i. If we want to find 𝑃𝑃(𝑋𝑋 < 5) 𝑜𝑜𝑜𝑜 𝑃𝑃(𝑋𝑋 ≥ 4) we can use the c.d.f  

1. Can utilize the stats library to do so  



a. Stats.binom.cdf, or stats.poisson.cdf  followed by the parameters 
and then a number is equal to  𝑃𝑃(𝑋𝑋 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

2. Poissonizing the Binomial 
a. Sums of Independent Poisson Variables  

i. Let X have the Possion(𝜇𝜇) distribution and let Y be an independent Poisson( λ). 
Then 𝑆𝑆 = 𝑋𝑋 + 𝑌𝑌,𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆 ℎ𝑎𝑎𝑎𝑎 𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜇𝜇 +  𝜆𝜆) 

ii. An important application of this is that if you have n I.i.d Poisson(p) variables 
then their sum becomes a Poisson with parameter np. 

b. Randomizing the Number of Bernoulli Trials 
i. In a fixed number of Bernoulli Trials the number of successes and failures are 

directly proportional; if you know one then you can find the other and they are 
not independent 

1. However, if the number of trials is random and has a Possion Distribution 
we come across a interesting finding 

2. Let N have the Poisson (µ) distribution, Let S be the number of successes 
in N i.i.d Bernoulli trials with parameter p.  

a. 𝑃𝑃(𝑁𝑁 = 𝑛𝑛, 𝑆𝑆 = 𝑠𝑠) = 𝑒𝑒−𝜇𝜇 (𝜇𝜇𝑛𝑛)
𝑛𝑛!

∗ (𝑛𝑛!)
𝑠𝑠!(𝑛𝑛−𝑠𝑠)!

 𝑝𝑝𝑠𝑠 (1 − 𝑝𝑝)𝑛𝑛−𝑠𝑠 

b. 𝑃𝑃(𝑆𝑆 = 𝑠𝑠) =  ∑ 𝑃𝑃(𝑁𝑁 = 𝑛𝑛, 𝑆𝑆 = 𝑠𝑠)∞
 𝑛𝑛−𝑠𝑠=0  

c. 𝑃𝑃(𝑆𝑆 = 𝑠𝑠) = 𝑒𝑒−𝜇𝜇𝜇𝜇 (𝑢𝑢𝑢𝑢)𝑠𝑠

𝑠𝑠!
 

d. Thus if the number of trials is fixed, we know the distribution of 
the Bernoulli i.i.d R.V’s follows a binomial distribution, but if the 
number of trials is variable as per a Poisson distribution, the 
distribution of successes follows a Poisson distribution  

e. You can repeat this process with the “failures” of th same 
distribution and come to the conclusion that both the successes 
and the failures are independent  

ii. Summary of Poissonization of Binomial  
1. Suppose you run N i.i.d Bernoulli(p) trials where N has the Poisson(µ)  

distribution. Let S be the number of successes and F be the number of 
failures. 

a. S has the Poisson(µp) distribution 
b. F has the Poisson(µ(1-p)) distribution  
c. S and F are independent  

3. Multinomial Distribution 
a. Extension of the binomial distribution to include scenarios in which multiple different 

outcomes are possible, not just 2 
b. Suppose we are running n i.i.d trials where each trials can result in one of k different 

classes. For each i = 1,2,3…k let the chance of getting Class i on each trial be pi  such that 
∑ 𝑝𝑝𝑘𝑘
𝑖𝑖=1 𝑖𝑖 = 1. Let Ni be the number of trials that result in Class i , so that ∑ 𝑁𝑁𝑖𝑖 = 𝑛𝑛   𝑘𝑘

𝑖𝑖=1  



c. Thus this results in the joint distribution of N1 , N2 , N3 … Nk being:  
i. 𝑃𝑃(𝑁𝑁1 = 𝑛𝑛1,𝑁𝑁2 = 𝑛𝑛2 … .𝑁𝑁𝑘𝑘 = 𝑛𝑛𝑘𝑘) = 𝑛𝑛!

𝑛𝑛1!𝑛𝑛2!𝑛𝑛3! ..𝑛𝑛𝑘𝑘! 
𝑝𝑝1
𝑛𝑛1𝑝𝑝2

𝑛𝑛2 … 𝑝𝑝𝑘𝑘
𝑛𝑛𝑘𝑘 

ii. The distribution of any Ni is binomial as we are simply selecting a portion from N 
each with a certain probability of success while the rest need to not meet that 
requirement  

d. Poissonization 
i. For each i = 1,2….k the distribution of Ni is Poisson(µpi)  

1. The counts N1 , N2 , N3 …. In the k different categories are mutually 
independent  

2. Creating a random sample allows us to simply multiple independent 
probabilities to get the equation we want  

Chapter 8: Expectation  

1. Expectation  
a. The distribution of a random variable gives us detailed information about how 

probability is distributed over all the possible values of a variable. The expectation is 
a way of gaining insight into a distribution by looking at its “middle”.  

2. Definition 
a. The expectation of a R.V X denoted E[X] is the average of all possible values of X 

weighted by their probabilities 
i. Either on X’s domain: 𝐸𝐸(𝑋𝑋) =  ∑ 𝑋𝑋(𝜔𝜔)𝑃𝑃(𝜔𝜔)𝑤𝑤 ∈Ω  

ii. Or on it’s range: 𝐸𝐸(𝑥𝑥) =  ∑ (𝑥𝑥 ∗  𝑃𝑃(𝑋𝑋 = 𝑥𝑥))𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥  
iii. If two R.V have the same distribution then they have the same Expectation  

b. You can either sum the multiplication of the value array and the probability array OR 
you can put it into a distribution table and call .ev() to get the value  

i. Example_dist.ev() & Plot(example_dist, show_ev = True)  
c. The Expectation is akin to the center of mass for the distribution  
d. Long Run Average  

i. The Expectation can also be viewed as a long run average if we sampled a 
large amount of times from the sample  

1. Simulated = example_dist.sample_from_dist(1000000) 
2. np.mean(simulated_x)  approximate E(X)  

e. Constant 
i. E(c) = c 

f. Bernoulli and Indicators  
i. If X has Bernoulli (p) indicators then P(X = 1) = p and P(X = 0) = 1- p. So, E(X) = 

1p  = p  
ii. Let A be an event, and the indicator of A is the random variable IA that is 1 if 

A occurs and 0 if A doesn’t occur. Thus IA has the Bernoulli Distribution (P(A)) 
which means that E(IA) = P(A) 



g. Uniform on an Interval 

i. If a R.V is uniform on an interval then 𝐸𝐸(𝑋𝑋) = (𝑎𝑎+𝑏𝑏)
2

 
h. Poisson  

i. E(X) = µ (already done the calculations before)  
i. Existence 

i. If X has countably many values then we are taking partial sums in order to 
find the Expectation. However, expectation doesn’t exist if the series doesn’t 
converge which can happen 

1. OOS but we should know that there are not well defined and infinite 
expectations  

3. Additivity  
a. Calculating expectation by plugging and chugging works but often can be 

cumbersome; thus we want shortcuts  
b. Additivity of Expectation: 

i. E(X + Y) = E(X) + E(Y) 
c. Simplest way to apply the AOE is to break apart large R.V into indicators or more 

manageable distributions  
d. Linearity of Expectation 

i. E(ax + B) = aE(X) + B  
e. Unbiased Estimator 

i. Assume that λ is a parameter of X and that E(X) = λ, then X is an unbiased 
estimator of λ. 

1. This means that in the long run, if we keep estimating the parameter 
based on X, the average will approach the true value of the 
parameter 

f. Method of Indicators  
i. If we have a N that measures the number of successes in k trials then we can 

code each of the k trials as an individual indicator. Thus the Expectation for N 
becomes the sum of the Expectation for each indicator  

4. Expectations of Functions  
a. If Y = g(X) then we can calculate the domain of Y in three ways; 

i. 𝐸𝐸(𝑌𝑌) =  ∑ 𝑦𝑦 ∗ 𝑃𝑃(𝑌𝑌 = 𝑦𝑦)𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦  
ii. 𝐸𝐸(𝑌𝑌) = 𝐸𝐸�𝑔𝑔(𝑋𝑋)� =  ∑ (𝑔𝑔 ° 𝑋𝑋)(𝜔𝜔)𝑃𝑃(𝜔𝜔) 𝑤𝑤 ∈ Ω  

iii. 𝐸𝐸(𝑌𝑌) = 𝐸𝐸�𝑔𝑔(𝑋𝑋)� =  ∑ 𝑔𝑔(𝑥𝑥)𝑃𝑃(𝑋𝑋 = 𝑥𝑥)𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥  
b. Tips and Tricks 

i. Python Code 
1. If you have a dist_table for X, then you can simply add a new column 

to it that transforms it: 
a. Dist_y = dist.withColumn(‘name’, np.abs(dist.column(‘value’)))  



b. Then simply 
sum(dist_y.column(‘name’)*dist_y.column(‘probability))  

ii. If you know E(X) and E(X(X-1)) then you can find E(X^2) as per linearity of 
additivity  

1. E(X^2 – X) = E(X^2) – E(X), E(X^2) = E(X) + E(X(X-1))  

Chapter 9 : Conditioning  

1. Conditioning Revisited: we’re gonna be looking at random processes indexed by time.  
2. Probability by Conditioning  

a. Suppose we have a gambler who plays a game; if a flipped coin lands head, he’ll win 
one dollar but if its tails he loses a dollar. He starts with a dollars and will play till he 
either has zero or gains b dollars. 

i. If pk represents the probability he will face ruin on the kth flip, then we have 
𝑝𝑝𝑘𝑘 = 𝑝𝑝𝑘𝑘−1

2
+ 𝑝𝑝𝑘𝑘+1

2
 and then we can simplify this to achieve 𝑝𝑝𝑘𝑘

2
+ 𝑝𝑝𝑘𝑘

2
=  𝑝𝑝𝑘𝑘−1

2
+

𝑝𝑝𝑘𝑘+1
2

 = 𝑝𝑝𝑘𝑘 − 𝑝𝑝𝑘𝑘−1 = 𝑝𝑝𝑘𝑘+1 − 𝑝𝑝𝑘𝑘  
ii. This means that the space between every succession is equal thus it is linear 

function which means that we can use our endpoints to construct a function 
iii. Our endpoints are (-a, 1) and (b, 0) where we are assuming 0 is our starting 

position. Thus our line’s slope = −1
𝑎𝑎+𝑏𝑏

 with intercept 𝑏𝑏
𝑎𝑎+𝑏𝑏

 which means that the 

probability of ruin at 0 is equal to 𝑏𝑏
𝑎𝑎+𝑏𝑏

  
b. Same Scenario but with a unfair coin:  

i. 𝑝𝑝𝑘𝑘 = 𝑝𝑝(𝑝𝑝𝑘𝑘+1) + (1 − 𝑝𝑝)(𝑝𝑝𝑘𝑘−1) 
ii. 𝑝𝑝(𝑝𝑝𝑘𝑘) − 𝑝𝑝(𝑝𝑝𝑘𝑘+1) = (1 − 𝑝𝑝)(𝑝𝑝𝑘𝑘) + (1 − 𝑝𝑝)(𝑝𝑝𝑘𝑘−1) 

iii. 𝑝𝑝(𝑝𝑝𝑘𝑘 − 𝑝𝑝𝑘𝑘−1) = (1 − 𝑝𝑝)(𝑝𝑝𝑘𝑘 + 𝑝𝑝𝑘𝑘−1) 
iv. This means that each term has a constant ratio between them which means 

we can still construct a geometric equation  
v. If  𝑟𝑟 = 𝑝𝑝

1−𝑝𝑝
 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑝𝑝𝑘𝑘 = (𝑟𝑟𝑎𝑎+𝑘𝑘 − 𝑟𝑟𝑎𝑎+𝑏𝑏) / (1 − 𝑟𝑟𝑎𝑎+𝑏𝑏)   

vi.  
3. Expectation with Conditioning  

a. If T and S are R.V’s conditioned on the same space, conditioning on S might be a 
good way to find the probability of T if S and T are related.  

i. Given a value of S, we can find what the expectation of T should be for that, 
such that we have E(T | S =s) , along with P(S  = s)  

ii. We can thus interpret E(T) as the average of the conditional expectations of T 
given the different values of S, weighted by the probability of those values  

iii. Thus we now have an R.V as for each value of s, there is an associated 
function for the same probability, with the function being = E(T | S= s)  

b. Iterated Expectations 



i. E(E(T|S)) = E(T)  
c. Other Properties of Conditional Expectation  

i. Additivity: E(T + U |S ) = E(T |S ) + E(U | S) 
ii. Linear Transformation: E(aT + b | S) = a E(T |S) + b 

iii. A variable can be treated as if a constant in the conditional expectation 
environment because we are simply conditioning on a variety of constnats  

1. E( g(S) | S) = g(S)  
2. E(g(S)T | S) = g(S) E(T|S)  

4. Expected Waiting Times   
a. Waiting till H  
b. Examples…Examples etc  

Chapter 10: Markov Chains 

1. Markov Chain Overview 
a. Stochastic process is a collection of random variables on a probability space. We study a 

kind of process that evolves over discrete intervals of time. It starts at X0  and at time n, 
it is at R.V Xn  

b. Markov Chains form a class of stochastic processes and essentially the distribution in the 
future depends on the present value, but not how it arrived at the present value  

c. Formally: 
i. For each 𝑛𝑛 ≥ 1,
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑋𝑋𝑛𝑛+1 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋0,𝑋𝑋1,𝑋𝑋2 …𝑋𝑋𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑋𝑋𝑛𝑛 

ii. 𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑖𝑖𝑛𝑛+1| 𝑋𝑋0 = 𝑖𝑖𝑜𝑜 ,𝑋𝑋1 = 𝑖𝑖1 …𝑋𝑋𝑛𝑛 = 𝑖𝑖𝑛𝑛) = 𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑖𝑖𝑛𝑛+1| 𝑋𝑋𝑛𝑛 = 𝑖𝑖𝑛𝑛) 
d. The state space is the set of possible values of the random variables in the chain  

i. We will restrict the state space to be discrete and typically finite  
e. Conditional Independence: 

i. R.V X, Y are said to be conditionally independent of Z if: 
1. P(X | Y, Z) = P(X | Z), thus Y provides no affect when Z’s influence is 

already counted  
ii. Markov Property says that the past and future are conditionally independent 

given the present  
2. Transitions  

a. Conditional Probabilities in the product are called transitional probabilities. For states, i,j 
the conditional probability 𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑗𝑗 |𝑋𝑋𝑛𝑛 = 𝑖𝑖) ∶   𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

b. Stationary Transition Probabilities  
i. When one step transition probabilities don’t depend on n , they are calel 

stationary or time-homogenous; all of the ones we study will be time 
homogenous  

ii. 𝑃𝑃(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑗𝑗 | 𝑋𝑋𝑛𝑛 = 𝑖𝑖) = 𝑃𝑃(𝑋𝑋1 = 𝑗𝑗 | 𝑋𝑋0 = 𝑖𝑖)  
c. One Step Transition Matrix  



i. Matrix P whose (i, j) element is 𝑃𝑃(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑋𝑋1 = 𝑗𝑗 |𝑋𝑋0 = 𝑖𝑖)  
1. Square matrix which is indexed by the state space  
2. Each row of P is a distribution; for each state i and each n, Row i of the 

transition matrix is the conditional distribution of Xn+1  given that Xn = i  
ii. We can construct this inside Python by doing the following: 

1. Create an array for all the states  
2. Create a function that takes in a i and a j and then outputs the transition 

probability  
3. Use the Markov Chain object with method: 

a. MarkovObject = 
MarkovChain.from_transition_function(state_array, markovfunc)  

b. Can predict the probability of a certain path by using the method  
prob_of_path 

i. MarkovObject.prob_of_path(start, [list of paths])  
c. Simulate paths of the chain using the simulate path method: 

i. MarkoObject.simulate_path(start, num_steps)  
1. Returns a path and can be plotted by passing plot = 

True into the method  
d. N-Step Transition Matrix   

i. For state i and j, the chance of getting from i to j in n steps is called the n -step 
transition probability  

1. 𝑃𝑃𝑛𝑛(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑋𝑋𝑛𝑛 = 𝑗𝑗 |𝑋𝑋0 = 𝑖𝑖)  
2. Can use the .transition_matrix(n) to get the n-step matrix given a one 

step matrix  
3. The n step matrix is simply equal to (𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)𝑛𝑛 
4. The MarkovObject isn’t actually a matrix however and we can use 

.get_transition_matrix(n) to get an numpy matrix 
5. Can use np.linalg.matrix_power(Numpy_Matrix, power) to raise a matrix 

to a certain power  
ii. The Long Run 

1. If you increase n to infinity, the chain will exhibit memory loss in the 
sense that the starting state of the matrix no longer matters  

3. Deconstructing Chains 
a. Let S be a countably infinite or finite set of states; Any stochastic matrix indexed by the 

state space S is a transition matrix of some markov chain with state space S  
b. Communication: 

i. We say that i leads to j, I  j, or formally if  
1. There is a path of positive probability that starts at i and ends at j 
2. OR, (equivalently) there is some n > 0 ,such that Pn(i,j )  > 0  



ii. If both i and j communicate between each other, they then are said to 
“communicate” and if all states in a state space communicate with each other 
then it is called irreducible  

4. Period  
a. States can be periodic if we are working within discrete time. 

i. A state has period d if starting at i the chain can only come back to i only at times 
that are multiples of d. That is d is the greatest common divisor of the set of all n 
such that Pn(i, j) > 0 

ii. Periodic functions (ones with a d > 1) cause issues with long run behavior as they 
have zero probabilities for many n’s thus causing issues with limit statements  

iii. We will focus on aperiodic functions for the purpose of simplicity for scope. Thus 
if we know a markov chain is irreducible then we know that all the states have 
the same period, and we simply have to find one of them  

5. Long Run Behavior  
a. Every irreducible aperiod markov chain exhibits regularity over a long run  
b. 𝐿𝐿𝐿𝐿𝐿𝐿 𝑋𝑋0,𝑋𝑋1 … 𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆  
c. 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗,𝑃𝑃𝑛𝑛(𝑖𝑖, 𝑗𝑗) → 𝜋𝜋(𝑗𝑗) 𝑎𝑎𝑎𝑎 𝑛𝑛 →  ∞ 

i. Essentially the n-step transition probability converges to a distribution equvalent 
across all possible values of i  

d. Moreover 
i. 𝜋𝜋(𝑗𝑗) > 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗  

ii. ∑ 𝜋𝜋(𝑗𝑗) = 1 𝑗𝑗 ∈𝑆𝑆  
e. Properties  

i. Vector π is the unique solution to the balance equation π = Pπ  
ii. If for some n, the distribution of Xn is π then the distribution for Xm  is also π if m 

> n. Thus π is called the stationary or steady state distribution of the chain  
iii. For each state j, the jth entry of the π vector of π(j) is the expected long run 

proportion the time chain spends at j  
f. Uniqueness   

i. A finite, aperiodic, irreducible markov chain has exactly one stationary 
distribution  

g. Can use the .steady_state()  method for any given Markov Object  

Chapter 11: Reversing Markov Chains 

1. Overviews 
a. Analyzing long run behavior of markov chains helps us quantify random phenomenon 

and particularly in data science are used to draw random samples from a complex 
distribution. They can also be used to approximate expectations of random quantities 
whose distributions are either overly complicated or involve too many unknowns 



b. Sometimes we can do this using the Markov Chain Monte Carlo (MCMC) in which we 
create a markov chain with a complicated distribution as its stationary distribution and 
then running it multiple times  

i. Have to know how to reverse a Markov chain  
2. Detailed Balance 

a. If the chain is in a steady state that we know that is balanced; or essentially the number 
of particles leaving any state j is the same as the number of particles entering it  

i. 𝜋𝜋(𝑗𝑗) =  ∑ 𝜋𝜋(𝑘𝑘)𝑃𝑃(𝑘𝑘, 𝑗𝑗)𝑘𝑘 𝜖𝜖 𝑆𝑆  where π(k) is the proportion of particles leaving k 
ii. We also have detailed balance which goes more in depth to state the 

relationship between each of the states and j  
1. 𝜋𝜋(𝑖𝑖)𝑃𝑃(𝑖𝑖, 𝑗𝑗) = 𝜋𝜋(𝑗𝑗)𝑃𝑃(𝑗𝑗, 𝑖𝑖) 

iii. The detailed balance implies the balance equations but in particular the detailed 
balance provides us key advantages 

1. Balance equations are simple 
2. There are lots of them, for s states there �𝑠𝑠2� equations 

3. Reversibility  
a. Reversed Process 

i. Let X0 , X1 , X2 ….Xn be an irreducible Markov Chain with stationary distribution π. 
Let’s consider a reversed sequence Y1, Y2 , Y3 … Yn where Yk = Xn – k  

ii. 𝑃𝑃(𝑌𝑌1 = 𝑗𝑗 |𝑌𝑌𝑜𝑜 = 𝑖𝑖) = 𝜋𝜋(𝑗𝑗)𝑃𝑃(𝑗𝑗,𝑖𝑖)
𝜋𝜋(𝑖𝑖)

 

iii. The forwards chain (X chain) is reversible for all n if the reversed sequence has 
the same one -step transition probabilities as the original  

1. 𝜋𝜋(𝑗𝑗)𝑃𝑃(𝑗𝑗,𝑖𝑖)
𝜋𝜋(𝑖𝑖)

= 𝑃𝑃(𝑖𝑖, 𝑗𝑗),𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖, 𝑗𝑗  

2. 𝜋𝜋(𝑖𝑖)𝑃𝑃(𝑖𝑖, 𝑗𝑗) = 𝜋𝜋(𝑗𝑗)𝑃𝑃(𝑗𝑗, 𝑖𝑖) which the balance equations which means the 
chain is reversible if all the detailed balance equations have a positive 
solution  

4. Markov Chain Monte Carlo   ERROR I DON’T UNDERSTAND  

Chapter 12: Standard Deviation 

1. Overview 
a. Allows us to measure the distance of a random variable from the Expected Value (µ) 

a.k.a the mean  
i. Can’t just do E( X - µx) because that results in E(X) - µx  which means its zero  

2. Definition 
a. Let X be a R.V with expectation µx. The Standard Deviation (SD) denoted a SD(X) or σX is 

the root mean square deviations from the mean  
i. 𝑆𝑆𝑆𝑆(𝑋𝑋) = 𝜎𝜎𝑋𝑋 = �𝐸𝐸((𝑋𝑋 − µ𝑋𝑋)2) 

ii. 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝜎𝜎𝑋𝑋   2 and is closely related to the Pythagorean Theorem  
iii. Given a distribution object (table) you can use method .sd() to get St. Dev  



b. 𝑆𝑆𝑆𝑆(𝑎𝑎𝑎𝑎 + 𝑏𝑏) = |𝑎𝑎|𝜎𝜎𝑋𝑋 
c. Computational Formula for Variance  

i. 𝜎𝜎𝑋𝑋   2 = 𝐸𝐸((𝑋𝑋 − µ𝑋𝑋)2) = 𝐸𝐸(𝑋𝑋2) − µ𝑋𝑋   2 
3. Prediction and Estimation  

a. If we wanted to make a guess among all the choices of c when guessing the value of a 
Random Variable, it would make sense to pick µX as it would minimize the standard 
deviation of your answer, meaning you would be closest to you answer the majority of 
the time.  

i. The Mean as a Least Squares Predictor  
1. The predictor µX has the smallest mean squared error among all the 

possible choices c and that value is the Variance of X, a.k.a the square of 
the standard deviation 

ii. Comparing Estimates  
1. If we have two competing estimators of a parameter, we can use 

expected values and standard deviations in order to figure out which one 
is more accurate probabilistically 

2. Many times even though an estimator can be more accurate in the sense 
that its expectation is closer to the parameter mean, it can have a larger 
standard deviation causing impreciseness.  

a. Bias-Variance trade off, a.k.a Accuracy vs Precision 
iii. Tail Bounds  

1. If you know E(X) and SD(X) then it is possible to figure out the tail bounds 
of the random variable.  

2. Suppose g(X) and h(X) are two functions such that g(X)  ≥ H(X) for all 
possible values of x, then E(g(X)) ≥ E(h(X))  

a. Lets now consider two functions g(x)  = x and h(X)  = c I(x ≥ c)  
b. E(g(X)) = E(X) while E(h(X)) = c E(I) = c P(X ≥ c) =  

i. E(X) ≥ E(h(X))  E(X) ≥ cP(X ≥c)  
3. Markov’s Inequality  

a. Let X be an non negative random variable and for any c ≥ 0  

i. 𝑃𝑃(𝑋𝑋 ≥   c )  ≤ 𝐸𝐸(𝑋𝑋)
𝑐𝑐

 

ii. 𝑂𝑂𝑂𝑂 𝑃𝑃�𝑋𝑋 ≥   kµX�  ≤ 1
𝑘𝑘

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 > 0  
4. Chebyshev’s Inequality  

a. 𝑃𝑃(|𝑋𝑋 − µ𝑋𝑋| ≥ 𝑧𝑧𝜎𝜎𝑋𝑋) = 1
𝑧𝑧2

 
b. Chebyshev’s Inequality makes no assumption about how a 

distribution looks and whether it is poisson ,geometric uniform 
etc…, the inequality still applies no matter what  

c. HOWEVER, if we know the shape of the distribution often we can 
do better than what is required  

5. Standard Units  



a. We can create a R.V Z for any random variable X, which abides by 
the following translation  

i. 𝑍𝑍 = 𝑋𝑋−µ𝑋𝑋
𝜎𝜎𝑋𝑋

 

b. By linear function rules, E(Z) = 0 and SD(Z) = 1  
c. Thus chebsyshev’s for Z states 𝑃𝑃(|𝑍𝑍| ≥ 𝑧𝑧)  ≤ 1

𝑧𝑧2
 

d. Another form is  

i. 𝑃𝑃(|𝑋𝑋 − µ𝑋𝑋| ≥ 𝑐𝑐) ≤ 𝜎𝜎𝑋𝑋
    2

𝑐𝑐2
 

6. Heavy Tails  
a. Expectations and Standard Deviations aren’t useful when we 

encounter elongated and heavy tail skew  
b. Often times we encounter distributions such as Zipf’s Law which 

states an inverse probability to rank which means that as n gets 
large the Expectation and standard deviations approach infinity  

Chapter 13: Variance via Covariance 

1. Overview 
a. µX = E(X), σX = SD(X) and DX  = X - µX or the deviation of X from its mean such that Var(X)  

= E(D2X)  
b. Variance of Sum 

i. S = X + Y  E(S) = µX + µY and DS is the sum of the deviations of X and Y  
ii. Var(S) = E(D2S)  = E[(DX + Dy)2] = Var(X) + Var(Y) + 2E(DXDY)  

iii. The extra term in that equation is twice the covariance of X and Y Cov(X, Y), and 
is the expected product of the deviations of X and Y   

1. Cov(X, Y) = E[ (X - µX) (Y - µy)]  
2. 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋 + 𝑌𝑌 ) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) + 2𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) 
3. 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑦𝑦) = 𝐸𝐸[( 𝑋𝑋 − µ𝑋𝑋)(𝑌𝑌 − µ𝑋𝑋)] 

2. Properties of CoVariance  
a. 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑐𝑐) = 0 , 𝑡𝑡ℎ𝑢𝑢𝑢𝑢 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛′𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  
b. 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑋𝑋) = 𝐸𝐸(𝐷𝐷𝑋𝑋𝐷𝐷𝑋𝑋) = 𝐸𝐸(𝐷𝐷𝑋𝑋  2) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)  
c. 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑋𝑋) 
d. 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) = 𝐸𝐸�(𝑋𝑋 − µ𝑋𝑋)�𝑌𝑌 − µ𝑦𝑦�� = 𝐸𝐸[(𝑋𝑋𝑋𝑋 − 𝑋𝑋µ𝑌𝑌 − 𝑌𝑌µ𝑋𝑋 + 𝑢𝑢𝑋𝑋µ𝑌𝑌)] =  
e. 𝐸𝐸(𝑋𝑋𝑋𝑋) − 𝐸𝐸(𝑋𝑋𝑢𝑢𝑌𝑌) − 𝐸𝐸(𝑌𝑌µ𝑋𝑋) + 𝐸𝐸(µ𝑋𝑋µ𝑌𝑌) = 𝐸𝐸(𝑋𝑋𝑋𝑋) − µ𝑋𝑋µ𝑌𝑌 
f. 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋 + 𝑌𝑌,𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑍𝑍) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑍𝑍) 
g. Main Property : Bilinearity  

i. 𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋,𝑌𝑌) 
ii. And by induction 𝐶𝐶𝐶𝐶𝐶𝐶(∑ 𝑎𝑎𝑖𝑖𝑋𝑋𝑖𝑖,∑ _𝑏𝑏𝑖𝑖𝑌𝑌𝑖𝑖) =  ∑ 𝑎𝑎𝑖𝑖𝑛𝑛

𝑖𝑖=1 ∑ 𝑏𝑏𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖 =1  

iii. Such allows us to solve equations such as these  



1. 𝐶𝐶𝐶𝐶𝐶𝐶(10𝑋𝑋 − 𝑌𝑌, 3𝑌𝑌 + 𝑍𝑍) = 30𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌) + 10𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑍𝑍) − 3𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑌𝑌) −
𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑍𝑍) 
 

h. Independence Implies No Correlation  
i. 𝐸𝐸(𝑋𝑋𝑋𝑋) = 𝐸𝐸(𝑋𝑋)𝐸𝐸(𝑌𝑌) → 𝐸𝐸(𝑋𝑋𝑋𝑋) − µ𝑋𝑋µ𝑌𝑌 = 0 → 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑅𝑅.𝑉𝑉 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶 =

0   
3. Sums of I.I.D Samples  

a. 𝐿𝐿𝐿𝐿𝐿𝐿 𝑋𝑋1,𝑋𝑋2 …𝑋𝑋𝑁𝑁𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑛𝑛 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖+1  

b. 𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆𝑛𝑛) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑛𝑛, 𝑆𝑆𝑛𝑛) =  ∑ ∑ 𝐶𝐶𝐶𝐶𝐶𝐶�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗�  = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 +  ∑∑ 𝐶𝐶𝐶𝐶𝐶𝐶�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗�1<𝑖𝑖<𝑗𝑗<𝑛𝑛

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1  

c. Therefore if all X1 ..Xn  are independent then the covariances become 0, leaving us with  
i. 𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆𝑛𝑛) =  ∑ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑖𝑖)𝑛𝑛

𝑖𝑖=1  
d. Sum of I.I.D Samples  

i. 𝐸𝐸(𝑆𝑆𝑛𝑛) = 𝑛𝑛µ,𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆𝑛𝑛) = 𝑛𝑛𝜎𝜎2, 𝑆𝑆𝑆𝑆(𝑆𝑆𝑛𝑛) =  √𝑛𝑛𝜎𝜎 
e. Variance of the Binomial  

i. Let X = Bin(n, p), then we know that 𝑋𝑋 =  ∑ 𝐼𝐼𝑗𝑗𝑛𝑛
𝑖𝑖=1  where each I is an i.i.d that 

takes on a value 1 with probability p, thus having 𝐸𝐸(𝐼𝐼) = 𝑝𝑝,𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼) = 𝑝𝑝(1 − 𝑝𝑝) 
ii. Thus 𝐸𝐸(𝑋𝑋) = 𝑛𝑛𝑛𝑛,𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝑛𝑛𝑛𝑛(1 − 𝑝𝑝) 

4. Sums of Simple Random Samples  
a. Indicator CoVariance  

i. Let A & B be two events and let IA and IB be the indicators of A and B respectively  
ii. 𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝐴𝐴, 𝐼𝐼𝐵𝐵) = 𝐸𝐸(𝐼𝐼𝐴𝐴, 𝐼𝐼𝐵𝐵) − 𝐸𝐸(𝐼𝐼𝐴𝐴)𝐸𝐸(𝐼𝐼𝐵𝐵) = 𝑃𝑃(𝐴𝐴𝐴𝐴) − 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵) 

iii. If the covariance is positive we can rearrange to find that P(B|A) > P(A) which 
entails that the probability A occurs is higher if B has occurred  

b. Variance of the HyperGeometric  
i. We know that 𝑋𝑋 =

 ∑ 𝐼𝐼𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

ii. 𝐸𝐸(𝐼𝐼𝑖𝑖) = 𝐺𝐺
𝑁𝑁

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑗𝑗,→ 𝐸𝐸(𝑋𝑋) = 𝑛𝑛𝑛𝑛
𝑁𝑁

,  

iii. 𝑉𝑉𝑉𝑉𝑉𝑉�𝐼𝐼𝑗𝑗� = 𝐺𝐺
𝑁𝑁
∗ 𝐵𝐵
𝑁𝑁

,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐵𝐵 = 𝑁𝑁 −
𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

iv.  𝐶𝐶𝐶𝐶𝐶𝐶�𝐼𝐼𝑗𝑗 , 𝐼𝐼𝑘𝑘� = 𝐸𝐸�𝐼𝐼𝑗𝑗 , 𝐼𝐼𝑘𝑘� − 𝐸𝐸�𝐼𝐼𝑗𝑗�𝐸𝐸(𝐼𝐼𝑘𝑘) = 𝐺𝐺
𝑁𝑁
∗ 𝐺𝐺−1
𝑁𝑁−1

− 𝐺𝐺
𝑁𝑁
∗ 𝐺𝐺
𝑁𝑁

 

v. 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) =  ∑ 𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼𝑖𝑖) + ∑∑ 𝐶𝐶𝐶𝐶𝐶𝐶�𝐼𝐼𝑗𝑗 , 𝐼𝐼𝑖𝑖� →
𝑛𝑛𝑛𝑛(1−𝑝𝑝)(𝑁𝑁−𝑛𝑛)

𝑁𝑁−11≤𝑗𝑗≠𝑖𝑖≤𝑛𝑛
𝑛𝑛
𝑖𝑖=1 , 𝑝𝑝 = 𝐺𝐺

𝑁𝑁
 

c. Variance of a Simple Random Sample Sum 
i. 𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆𝑛𝑛) = 𝑛𝑛𝜎𝜎2 + 𝑛𝑛(𝑛𝑛 − 1)𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝑋𝑋2) 

ii. If we sample every single element from a population (i.e n = N) then we will have 
a variability of 0, thus we have a new equation 

0 = 𝑁𝑁𝜎𝜎2 + 𝑁𝑁(𝑁𝑁 − 1)𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝑋𝑋2) 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋1,𝑋𝑋2) =  −
𝑁𝑁𝜎𝜎2

𝑁𝑁(𝑁𝑁 − 1) =
𝜎𝜎2

𝑁𝑁 − 1
 

Thus our final equation becomes 𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆𝑛𝑛) = 𝑛𝑛𝜎𝜎2(𝑁𝑁−𝑛𝑛)
𝑁𝑁−1

 



5. Finite Population Correction 

a.  
b. There is only one difference between the two method which is the finite population 

correction = 𝑁𝑁−𝑛𝑛
𝑁𝑁−1

, with the name arising because sampling with replacement is the same 
as samping without replacement from an infinite population  

c. When N is moderately large ( > 100) we have 𝑁𝑁−𝑛𝑛
𝑁𝑁−1

≈ 𝑁𝑁−𝑛𝑛
𝑁𝑁

= 1 − 𝑛𝑛
𝑁𝑁

, which means that if n 
is very small relative to N, then our FPC is approximately 1 

d. Non Effect of the Population Size  
i. SD of a simple random sample depends only on the sample size and the 

population SD provided that FPC is close enough to 1  
1. 𝑆𝑆𝑆𝑆(𝑆𝑆𝑛𝑛) ≈  √𝑛𝑛𝜎𝜎 

Chapter 14: The Central Limit Theorem  

1. Exact Distribution  
a. 𝑃𝑃(𝑋𝑋 + 𝑌𝑌 = 𝑘𝑘) =  ∑ 𝑃𝑃(𝑋𝑋 = 𝑗𝑗, 𝑌𝑌 = 𝑘𝑘 − 𝑗𝑗) → 𝑋𝑋,𝑌𝑌 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖 =  ∑ 𝑃𝑃(𝑋𝑋 = 𝑗𝑗)𝑃𝑃(𝑌𝑌 = 𝑘𝑘 − 𝑗𝑗)𝑗𝑗𝑗𝑗  
b. However, this can be hard to expand out to multiple different R.V’s instead of just two 

as it involves a lot of overlapping terms  
c. Probability Generating Functions  

i. Let X be a R.V with possible values 1,2… N for some fixed integer . Let P(X =k) = pk   
ii. 𝐺𝐺𝑋𝑋(𝑠𝑠) =  ∑ 𝑝𝑝𝑘𝑘𝑠𝑠𝑘𝑘, −∞ < 𝑠𝑠 < ∞𝑁𝑁

𝑘𝑘=0  where GX is the probability generating 
function of X such that you can plug in any value of s and get the values through 
this function and that we could get all possible values and probability from it  

iii. We can convert the GX into an expectation as it follows the same form of 
∑ 𝑓𝑓(𝑥𝑥)𝑃𝑃(𝑋𝑋 = 𝑥𝑥),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑥𝑥𝑗𝑗 → 𝐺𝐺𝑋𝑋(𝑠𝑠) = 𝐸𝐸(𝑠𝑠𝑋𝑋) 

iv. By the linearity of expectation we know that 
1. 𝐺𝐺𝑋𝑋+𝑌𝑌(𝑠𝑠) = 𝐺𝐺𝑋𝑋(𝑠𝑠)𝐺𝐺𝑌𝑌(𝑠𝑠) 
2. The Probability Generating Function of The sum of Independent Random 

Samples is the product of their PGF’s  
d. PGF of the Sum of I.I.D Sample  

i. Let X1, X2, X3…XN be i.i.id with a distribution of 0, 1….N. Let Sn = X1 + X2 ..+ Xn, then 

the PGF of Sn  =  𝐺𝐺𝑆𝑆𝑛𝑛(𝑠𝑠) = �𝐺𝐺𝑋𝑋1(𝑠𝑠)�
𝑛𝑛

,−∞ < 𝑠𝑠 < ∞ 
ii. As GX1 is a polynomial of degree N, the entire PGF for a sum of i.i.d variables is of 

degree nN, and as with any PGF  



1. 𝑃𝑃(𝑆𝑆𝑛𝑛 = 𝑘𝑘) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑠𝑠𝑘𝑘 𝑖𝑖𝑖𝑖 𝐺𝐺𝑆𝑆𝑛𝑛(𝑠𝑠) 
iii. Our methodology now follows as such: 

1. Start with PGF of X1  
2. Raise it to the power of n, and get the pgf of Sn  
3. Read the distribution of Sn off the pgf  

2. PGF’s in Numpy  
a. We can use Numpy to raise a polynomial to an nth power fairly easily  

i. Probs_X1 = np.array(0.1, 0.5, 0.4)  
ii. Coeffs_X1 = np.fluidud(probs_X1) (reverses the array)  

iii. Pgf_X1 = np.poly1d(coeffs_X1) (creates a polynomial from an array, with highest 
power first) 

iv. Pgf_s3 = pgf_X1**3 (Raises polynomial to the third power)  
v. Coeffs_s3 = pgf_s3.c (Gets the coefficients from the polynomial)  

vi. Probs_S3  = np.fluidud(coeffs_s3)  
b. A Function to Calculate The Distribution of S3  

i. Can create a function to automate all the stuff above, but no point writing it all 
down  

3. Central Limit Theorem 
a. Central to the fields of probability, statistics and data science  
b. Few Things to Go Over  

i. Standard Units  
1. 𝑍𝑍 = 𝑋𝑋−µ𝑋𝑋

𝜎𝜎𝑋𝑋
→ 𝐸𝐸(𝑍𝑍) = 0 , 𝑆𝑆𝑆𝑆(𝑍𝑍) = 1  

ii. Standard Normal Curve  

1. 𝜙𝜙(𝑧𝑧) = 1
√2𝜋𝜋

𝑒𝑒−
1
2𝑧𝑧

2
,−∞ < 𝑧𝑧 <  ∞  

iii. Terminology  
1. Curve has location parameter 0, akin to a mean  
2. Curve has scale parameter 1, akin to Standard Deviation  

iv. Normal Curves  

1. General Formula is 𝜙𝜙(𝑧𝑧) = 1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
1
2�
𝑥𝑥−𝑢𝑢
𝜎𝜎 �

2

      

c. Central Limit Theorem  
i. Let X1 , X2 …Xn be i.i.d each with mean µ and SD σ. Let Sn = X1 + X2 …+ Xn, then we 

know that E(Sn) = nµ and Var(Sn) = nσ2   
ii. The Theorem states: 

1. When n is large, the distribution of the standard sum  𝑆𝑆𝑛𝑛−𝑛𝑛µ
𝜎𝜎√𝑛𝑛

 

approximately follows the standard normal curve, regardless of the 
distribution of the individual X’s  

2. Plot_norm(plot_interval, mean, sd) 
3. Stats.norm.cdf(right bound, mean, sd)  



4. Plot_norm(plot_interval, mean, sd, left_end = left_end, right_end = 
rightend) highlights the marked area in gold  

d. Standard Normal CDF  
i. There is no mathematical approximation for the standard curve and it has to be 

calculated via approximation but we still give it a general notation which is  
ii. Φ(𝑥𝑥) =  ∫ 𝜙𝜙(𝑧𝑧)𝑑𝑑𝑑𝑑,− ∞ < 𝑧𝑧 <  ∞𝑥𝑥

−∞  thus under this we can say that  

iii. 𝐼𝐼𝐼𝐼 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑃𝑃(𝑆𝑆𝑛𝑛 < 𝑥𝑥) ≈  Φ�x−nµ
σ√𝑛𝑛

� 

e. Binomial Distribution  
i. Is is Poisson or Normal? We said that as n approaches infinity and p approaches 

zero, then binomial is poisson 
1. We need to see whether the data is crunched around zero or not and we 

assume a general threshold of  
2. Np and n(1-p) > 10 OR np(1-p) > 9  

4. The Sample Mean 
a. So for any given sum of i.i.d variables we see that as n increases the mean of the sum 

increases proportionally (E(Sn) = nµ) and the SD(Sn) is more spread out as it is = root(n)σ. 
However, the average of the Sum of i.i.d behaves much more differently  

b. 𝐸𝐸 �𝑆𝑆𝑛𝑛
𝑛𝑛
� = 𝑛𝑛µ

𝑛𝑛
= µ, 𝑆𝑆𝑆𝑆 �𝑆𝑆𝑛𝑛

𝑛𝑛
� =  √𝑛𝑛𝜎𝜎

𝑛𝑛
 = 𝜎𝜎

√𝑛𝑛
 

i. The relation the SD has to the sample size means that as we increase our sample 
size, we will decrease our variability, by a factor of a power of .5 This mean if we 
increase our sample size by 9, we decrease our variability by 3  

5. Weak Law Of Large Numbers  
a. The mean of a large sample is close to the population mean with high probability  
b. 𝐿𝐿𝐿𝐿𝐿𝐿 𝑋𝑋1,𝑋𝑋2 …𝑋𝑋𝑛𝑛𝑏𝑏𝑏𝑏 𝑖𝑖. 𝑖𝑖.𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 µ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 𝜎𝜎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙  𝑋𝑋𝑛𝑛 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.  

c. 𝑃𝑃(|𝑋𝑋𝑛𝑛 − µ| > 𝜖𝜖) <
𝜎𝜎𝑋𝑋𝑛𝑛
2

𝜖𝜖2
=  𝜎𝜎

2

𝑛𝑛𝜖𝜖2
→ 0 𝑎𝑎𝑎𝑎 𝑛𝑛 →  ∞ 

6. Confidence Intervals  
a. CLT implies that with 95% confidence, the sample mean is within 2 SD’s of our 

population mean which means that with 95% confidence we can say that the population 
mean is within 2 standard deviations of our sample mean  

b. General Definition  
i. 𝐿𝐿𝐿𝐿𝐿𝐿 𝜆𝜆 𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 0 − 100 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 (−𝑧𝑧𝜆𝜆, 𝑧𝑧𝜆𝜆)  

ii. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜆𝜆 % 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡ℎ𝑒𝑒𝑒𝑒  
iii. 𝜆𝜆

100
≈ 𝑃𝑃 �µ ∈ 𝑋𝑋𝑛𝑛 ± 𝑧𝑧𝜆𝜆𝜎𝜎

𝑛𝑛.5 � 

Chapter 15: Continuous Distributions  

1. Density and CDF  
a. Let f be a non-negative function on the real number line and suppose  

i. ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 1  ∞
−∞  



ii. Then f is a Probability Density Function (PDF) or just density  
b. Density is not the Same as Probability  

i. f(x) is not necessarily equal to P(x)  
c. Areas are Probabilities  

i. A R.V X is said to have density f if 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎, 𝑏𝑏:  𝑃𝑃(𝑎𝑎 < 𝑋𝑋 < 𝑏𝑏) =  � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 
𝑏𝑏

𝑎𝑎
 

d. Cumulative Density Function  

𝐹𝐹(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) =  � 𝑓𝑓(𝑠𝑠)𝑑𝑑𝑑𝑑 
𝑥𝑥

−∞
 

𝑓𝑓(𝑥𝑥) =
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐹𝐹(𝑥𝑥) 

 
2. The Meaning of Density  

a. When X can take on an infinite amount of numbers, then each probability value is equal 
to zero  

b. f(x)dx is the chance that X is around x, and the integral takes care of summing all 
possible values a such  

c. The function f represents the probability per unit length  
3. Expectation  

𝐸𝐸�𝑔𝑔(𝑥𝑥)� =  � 𝑔𝑔(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 
∞

−∞
,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

4. Exponential Distribution  
a. A R.V has an exponential distribution with parameter λ if the density of T is given by  

𝑓𝑓𝑇𝑇(𝑡𝑡) = 𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆, 𝑡𝑡 ≥ 0  
b. CDF and Survival Function  

i. 𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡) = 𝐹𝐹𝑇𝑇(𝑡𝑡) = 1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 
c. Expectation and SD  

i. 𝐸𝐸(𝑋𝑋) = 1
𝜆𝜆

,𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 1
𝜆𝜆2

  
d. Median  

i. It is equal to where the survival function and the CDF intersect which is at 
log(2)E(X)  

e. Memoryless Property  
i. 𝑃𝑃(𝑇𝑇 > 𝑡𝑡 + 𝑠𝑠 | 𝑇𝑇 > 𝑡𝑡) = 𝑃𝑃(𝑇𝑇 > 𝑠𝑠) 

ii. Essentially the contextualization of the probability doesn’t matter  
f. The Rate 

i. λ is the instantaneous death rate for a reason that is irrelevant of me writing 
down and it just is as such  

5. Calculus in Sympy  
a. Can do calculus in SymPy and it’s a hell of a lot easier  



i. From sympy import *  
ii. Init_printing() (essentially creates a better formatting for when we print)  

iii. Declare(‘x’, interval = (0,1)) (declares a variable and the range it can take)  
iv. Density = 105* x**2 + (1-x)**4 (sets Density to a polynomial with x)  
v. Total_area = Integral(density, (x,0,1)) (creates an integral called total area)  

vi. Total_area.doit() (actually executes the program)  
vii. Indefinite = Integral(density).doit() (will return the indefinite integral)  

viii. Indefinite.subs(x, 0) (allows you to substitute a value for a  variable)  
ix. Declare(‘lambda’, positive = True) (declares a variable as only taking positive 

values)  
x. Integral(polynomial, (t, 0, oo)).doit() (oo is the same as infinity)  

Chapter 16: Transformations  

1. Overview 
a. We will work on finding the density of Y if Y = g(X)  

2. Linear Transformations  
a. Let X be a R.V with density fX and Y = aX + b, then: 

𝑓𝑓𝑌𝑌(𝑦𝑦) = 𝑓𝑓𝑋𝑋 �
𝑦𝑦 − 𝑏𝑏
𝑎𝑎

�
1

|𝑎𝑎|  

3. Monotone Functions  
a. The Formula 

i. 𝑓𝑓𝑌𝑌(𝑦𝑦) = 𝑓𝑓𝑋𝑋(𝑥𝑥) ∗ 1
𝑔𝑔′(𝑥𝑥)  𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝑔𝑔−1(𝑦𝑦) 

b. Understanding the Formula 
i. When we apply the density functiojn to y, we have the stretch of whatever the 

rate of change is at point x at that moment, which is given by g’(x) which is why 
we have to compensate by dividing by g’(x)  

c. Applying the Formula 
i. Make sure g(x) is continuous and increasing  

ii. Find the derivative of g(x) 
iii. Find the inverse function of g(x)  
iv. Utilize the known PDF of X  

d. Generalization  
i. If G is monotone we can simply replace the g’(x) in the denominator to the 

absolute value of g’(x) and still have the equation hold true  
4. Two to One Functions  

a. For Y  = X2 we have the issue that the function is not monotone and for every value of y, 
there are in fact two values of X, which means that the density of Y given density of X 
must take that into account  

i. Hence Y = a + b where a is conversion formula at positive x and b is conversion 
formula at negative y  



b. Square of the Standard  
i. Let Z be standard normal and W = Z2  

ii. 𝑓𝑓𝑊𝑊(𝑤𝑤) = 𝑓𝑓𝑍𝑍�√𝑤𝑤� ∗
1

2√𝑤𝑤
+ 𝑓𝑓𝑧𝑧�√−𝑤𝑤� ∗

1
2√𝑤𝑤

= 1
√2𝜋𝜋

𝑤𝑤−12𝑒𝑒−
1
2𝑤𝑤 

Chapter 17: Joint Densities  

1. Probabilities and Expectations  
a. A function f on a plane is said to be a joint density if: 

i. 𝑓𝑓(𝑥𝑥,𝑦𝑦) ≥  0,𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥, 𝑦𝑦  
ii. ∫ ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 𝑦𝑦𝑥𝑥  

b. A function f is said to be a joint density of R.V X and Y if: 

𝑃𝑃�(𝑋𝑋,𝑌𝑌)  ∈ 𝐴𝐴� = �  �𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 
𝐴𝐴

 

 
c. Can plot a joint density function by using  

i. Plot_3d(x_limits=(0,1), y_limits=(1,2), f= joint, cstride=4, rstride=4)  
ii. Using Sympy 

1. Declare(‘x’, interval= (0,1)) 
2. Declare(‘y’, interval=(0,1))  
3. f = 120*x *(y-x)*(1-y) 
4. Integral(f, (x,0,y), (y,0,1)).doit()  

a. Function, inner integral, outer integral  
d. Expectation  

i. 𝐸𝐸�𝑔𝑔(𝑋𝑋,𝑌𝑌)� = ∫ ∫ 𝑔𝑔(𝑥𝑥,𝑦𝑦)𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥𝑦𝑦  
2. Independence  

a. X, Y are independent if  
i. 𝑃𝑃(𝑋𝑋 ∈ 𝐴𝐴,𝑌𝑌 ∈ 𝐵𝐵) = 𝑃𝑃(𝑋𝑋 ∈ 𝐴𝐴)𝑃𝑃(𝑌𝑌 ∈ 𝐵𝐵),   ∀ 𝐴𝐴,𝐵𝐵  

ii. Thus if X,Y and independent  
1. 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑓𝑓𝑌𝑌(𝑦𝑦) 

b. Independent Standard Normal Random Variables  
i. Suppose X, Y and i.i.d standard R.V, then their joint density is given by their 

product which is  

𝑓𝑓(𝑥𝑥,𝑦𝑦) =
1

2𝜋𝜋
𝑒𝑒−

1
2�𝑥𝑥

2+𝑦𝑦2�,−∞ < 𝑦𝑦 <  ∞  

3. Marginal and Conditional Densities  
a. To find the marginal density of a variable, you need to sum all its density across the 

different values of y  
b. Thus our equation becomes 𝑓𝑓𝑋𝑋(𝑥𝑥) = ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑   𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 𝑦𝑦  

c. Conditional Densities  



i. 𝑓𝑓(𝑌𝑌|𝑋𝑋=𝑥𝑥) (𝑦𝑦) = 𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝑓𝑓𝑋𝑋(𝑥𝑥) otherwise interpreted as as the ratio of the density of X and 

Y divided by the density of X at a point x,y 
4. Beta Densities with Integer Parameters  

a. Order Statistics of IID Uniform (0,1) Variables  
i. Let U1, U2…Un be i.i.id uniform on (0,1). Imagine each Ui as the position of a dart 

thrown at the unit interval  
1. You can’t tell which one is U1 or U4 but it is possible to determine which 

one is lowest, second lowest etc… which we can rename U(1), U(2)…U(n) 
also known as the order statistics of U1…Un  

2. The kth order statistic is the kth element if we list all the i.i.d  in increasing 
order and is denoted as U(k)  

b. Joint Density of Two Order Statistics  
i. Let n = 5 and we want to work out the joint density of U(2)  and U(4), so essentially 

we want 𝑃𝑃�𝑈𝑈(2) ∈ 𝑑𝑑𝑑𝑑,𝑈𝑈(4) ∈ 𝑑𝑑𝑑𝑑� 
1. There are 5 variables we can choose to be in dx  
2. There are 4 varaibles we can then chose to in dy  
3. There are 3 variables that can be placed from (0 to x)  
4. There are 2 variables that can be placed from (x to y)  
5. There is 1 variabel that can be placed from( y to 1)  

ii. Density of U(k)  
1. One variable has to be at dx  
2. K-1 must be from 1 to x and n-k must be from x to 1  
3. Thus we have the total distribution as  

𝑃𝑃�𝑈𝑈(𝑘𝑘) ∈ 𝑑𝑑𝑑𝑑 � ~ 𝑛𝑛 ∗ 𝑑𝑑𝑑𝑑 ∗ �
𝑛𝑛 − 1
𝑘𝑘 − 1

� 𝑥𝑥𝑘𝑘−1(1 − 𝑥𝑥)𝑛𝑛−𝑘𝑘 

4. This is the binomial distribution as we can count a success as landing 
beyond x  and failure as landing below an we have n-1 different uniform 
variables that need to satisfy that  

5. We can take each probability and show that the density is  

𝑓𝑓𝑈𝑈(𝑘𝑘)(𝑥𝑥) =
𝑛𝑛!

(𝑘𝑘 − 1)! (𝑛𝑛 − 𝑘𝑘)!
𝑥𝑥𝑘𝑘−1(1 − 𝑥𝑥)𝑛𝑛−𝑘𝑘 

c. Beta Densities  
i. Using the above equation as a basis, we can see that if we have two positive 

numbers r and s then  

ii. 𝑓𝑓(𝑥𝑥) = (𝑟𝑟+𝑠𝑠−1)!
(𝑟𝑟−1)!(𝑠𝑠−1)!

𝑥𝑥𝑟𝑟−1(1 − 𝑥𝑥)𝑠𝑠−1, 0 < 𝑥𝑥 < 1  

iii. Is a probability density function, known as a beta density with parameters r and s  
iv. The shape is determined by r and s and we can manipulate them to skew the 

beta densities to have concentrated masses in certain areas  



v. We know that the beta density integrates to 1 so: 

�
(𝑟𝑟 + 𝑠𝑠 − 1)!

(𝑟𝑟 − 1)! (𝑠𝑠 − 1)!
𝑥𝑥(𝑟𝑟−1)(1 − 𝑥𝑥)𝑠𝑠−1 = 1

1

0
 

 
(𝑟𝑟 + 𝑠𝑠 − 1)!

(𝑟𝑟 − 1)! (𝑠𝑠 − 1)!
� 𝑥𝑥(𝑟𝑟−1)(1 − 𝑥𝑥)𝑠𝑠−1 = 1
1

0
 

� 𝑥𝑥𝑟𝑟−1(1 − 𝑥𝑥)𝑠𝑠−1 =
(𝑟𝑟 − 1)! (𝑠𝑠 − 1)!

(𝑟𝑟 + 𝑠𝑠 − 1)!

1

0
 

vi. Let X have Beta(r, s), then the expectation can be found which ends up being 𝑟𝑟
𝑟𝑟+𝑠𝑠

 
vii. We can also find the E(X2) and then find Var(X)  

1. Knowing this allows us to chose parameters that satisfy the concentration 
of the beta distribution  

Chapter 18: Normal and Gamma Families  

1. Standard Normal: The Basics  

a. Lets use the Rayleigh distribution = 𝑅𝑅 =  √𝑇𝑇,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 �1
2
� 

i. 𝑓𝑓𝑅𝑅(𝑟𝑟) = 𝑟𝑟𝑒𝑒−
1
2𝑟𝑟

2
, 𝑟𝑟 > 0   

ii. We want to prove that the constant of integration is 1
√2𝜋𝜋

 so right now we’ll call it 

c and instead have the joint distribution of X and Y be  

iii. 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑐𝑐2𝑒𝑒−
1
2�𝑥𝑥

2+𝑦𝑦2�, and we know that is has circular symmetry so we can 
define a new variable 𝑅𝑅 =  �𝑥𝑥2 + 𝑦𝑦2 and solve for its density  

iv. 𝑓𝑓(𝑅𝑅) = 2𝜋𝜋𝜋𝜋 ∗ 𝑐𝑐2𝑒𝑒−
1
2𝑟𝑟

2
,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟 = 𝑥𝑥2 + 𝑦𝑦2 

v. This looks the same to the Rayleigh distribution except for 2πc2 which means 
that this must equal 1 in order to maintain the integral equal to 1 requirement 
arriving at our constant of integration  

2. Sums of Independent Random Variables  
a. Sum of independent random variables is normal 
b. Sums of I.I.D Random Variables 

i. The sum of any number of i.i.d random normal variables will be normal  
3. The Gamma Family  

a. Non-negative R.V X has a distribution gamma(r, λ) for two positive parameters r and λ if 
the density of X is given by  

𝑓𝑓𝑋𝑋(𝑥𝑥) =
𝜆𝜆𝑟𝑟

Γ(𝑟𝑟)𝑥𝑥
𝑟𝑟−1𝑒𝑒−𝜆𝜆𝜆𝜆,𝑥𝑥 ≥   0  

where Γ(𝑟𝑟) =  ∫ 𝑥𝑥(𝑟𝑟−1)𝑒𝑒−𝑥𝑥 𝑑𝑑𝑑𝑑 ∞
0  

b. Key Fact about Gamma Recursion is that Γ(𝑟𝑟 + 1) =  𝑟𝑟 Γ(𝑟𝑟) 



i. Which implies that Γ(𝑟𝑟) = (𝑟𝑟 − 1)!  
1. This ends up allowing us to solve for E(X) and SD(X) arriving at  

a. 𝐸𝐸(𝑋𝑋) = 𝑟𝑟
𝜆𝜆

, 𝑆𝑆𝑆𝑆(𝑋𝑋) = √𝑟𝑟
𝜆𝜆

 
c. The Rate λ  

i. For a fixed r, the larger λ implies a smaller E(X) and essentially identifies the units 
of measurement  Y = cX  has a gamma (r, λ/c) distribution 

d. The Shape Parameter r  
i. When r = 1, the density is exponential but as r increases the density’s mass 

moves to the right and flattens out, and when we reach r = 10, the graph looks 
approximately normal  

e. Sums of Independent Gamma Variables with Same Rate  
i. IF X has the gamma distribution (r, λ) and Y independent of X has the gamma 

distribution (s, λ)   then X + Y has the gamma distribution (r + s, λ) distribution 
ii. Proof?  

iii. The sum of r i.i.id Exponential Variables(λ) has the distribution gamma(r, λ) 
where r is a positive integer  

4. Chi-Squared Distributions  
a. Chi-squared density with 1 degree of freedom (Chi-Squared(1)) has the density: 

𝑓𝑓𝑉𝑉(𝑣𝑣) =
1

√2𝜋𝜋
𝑣𝑣−

1
2𝑒𝑒−

1
2𝑣𝑣 , 𝑣𝑣 > 0  

b. From Chi-Squared (1) to Chi-Squared (n)  
i. A standard normal variable squared has the gamma distribution (1/2 , ½)  which 

means that the sum of those two would be (1, ½) which is the same as Expo(1/2) 
distribution  

ii. If we sum n different squares of standard normal variables we arrive at the 
gamma distribution (n/2, ½) which we call a chi-squared distribution of n degrees 
of freedom  

c. Chi-Squared with n Degrees of Freedom  
i. If we have a Chi-Squared(n) = Gamme(n/2, ½) then we can show that the density 

is  

𝑓𝑓𝑋𝑋(𝑥𝑥) =
�1

2�
𝑛𝑛
2

Γ �𝑛𝑛2�
𝑥𝑥
𝑛𝑛
2−1𝑒𝑒−

𝑥𝑥
2,        𝑥𝑥 > 0  

ii. Mean and Variance  
1. The E(Chi-Squared(n)) = r/λ = n/2/(1/2) = n  
2. SD(X) = root(n/2)/(1/2) = 2 root(n/2) = √2𝑛𝑛 

d. Estimating the Normal Variance  
i. Need to review more about the Chi-Square Distributions and Degrees of 

Freedom  



Chapter 19: Distributions of Sums 

1. Section is concerned with providing some general methods for working with sums of 
random variables, whether discrete or continuous  

2. The Convolution Formulas  
a. Let X and Y be discrete random variables and let S = X + Y . Then w know that the easiest 

way to find the distribution of S is by  

𝑃𝑃(𝑆𝑆 = 𝑠𝑠 ) = � 𝑃𝑃(𝑋𝑋 = 𝑥𝑥)𝑃𝑃(𝑌𝑌 = 𝑠𝑠 − 𝑥𝑥)
𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥

, 𝑖𝑖𝑖𝑖 𝑋𝑋,𝑌𝑌 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

b. This can be applied to continuous distributions as well 

𝑓𝑓𝑆𝑆(𝑠𝑠) = � 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑓𝑓𝑌𝑌(𝑠𝑠 − 𝑥𝑥)𝑑𝑑𝑑𝑑
∞

∞
 

c. Sum of Two IID Exponential Random Variables  
i. Using the convolution formula we can find that the integral we need to solve for 

is  

𝑓𝑓𝑠𝑠(𝑠𝑠) =  � 𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆𝜆𝜆𝑒𝑒−𝜆𝜆(𝑠𝑠−𝑥𝑥)𝑑𝑑𝑑𝑑 =  � 𝜆𝜆2𝑒𝑒−𝜆𝜆𝜆𝜆 = 𝜆𝜆2𝑒𝑒−𝜆𝜆𝜆𝜆𝑠𝑠
𝑠𝑠

0

∞

−∞
 

3. Moment Generating Functions  
a. Probability Mass Function, Cummulative Density Function, Probability Density Function 

and survival functions are all examples of specifying the probability distributions of a 
random variable  

i. We can become more abstract with this and generate powerful tools for 
studying distributions specifically in this case: Moment Generating Function  

ii. 𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝐸𝐸(𝑒𝑒𝑡𝑡𝑡𝑡),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑅𝑅.𝑉𝑉,∀ 𝑡𝑡 → 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
1. The probability generating function is actually a very specific case of the 

Moment Generating Function in which s = et  
b. Generating Moments 

i. For non-negative functions k, the expectations E(Xk) is called the kth moment of 
X. The first moment is called the Center of Mass  

ii. We can expand the moment equation using the expansion series of E to find that  

𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝐸𝐸(1 +
𝑡𝑡𝑡𝑡
1!

+
𝑡𝑡2𝑋𝑋2

2!
+
𝑡𝑡3𝑋𝑋3

3!
… . = 𝐸𝐸(1) +

𝑡𝑡𝑡𝑡(𝑋𝑋)
1!

+
𝑡𝑡2𝐸𝐸(𝑋𝑋2)

2!
…. 

iii. We can utilize the differentiation of MX to find the Expectations and it correlates 
that the nth derivate of MX taken at zero = E(Xn)  

c. Identifying the Distribution  
i. If two distributions have the same mgf then they must be the same distribution  

d. Working well with Sums  
i. If X and  Y are independent then  

𝑀𝑀𝑋𝑋+𝑌𝑌(𝑡𝑡) = 𝑀𝑀𝑋𝑋(𝑡𝑡)𝑀𝑀𝑌𝑌(𝑡𝑡) 


